Integrated M.Sc. Physics

(Five Year Programme)

Curriculum, Programme Structure and Course Contents

(Adapted from TANSCHE B.Sc. Physics syllabus for first three years)

(2023-2024 onwards)

DEPARTMENT OF PHYSICS Manonmaniam Sundaranar University Tirunelveli

INTEGRATED M.Sc. PHYSICS SYLLABUS (First Three Years)

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provide a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR							
	UNDERGRADUATE EDUCATION						
Programme	B.Sc., Physics						
Programme							
Code							
Duration	3 years [UG]						
Programme	PO1: Disciplinary knowledge:						
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding						
(These are	of one or more disciplines that form a part of an undergraduate						
mere	programme of study						
guidelines.	PO2: Communication Skills:						
Faculty can	Ability to express thoughts and ideas effectively in writing and orally						
create POs	communicate with others using appropriate media; confidently share						
based on their	one's views and express herself/himself; demonstrate the ability to listen						
curriculum or	carefully; read and write analytically and present complex information in						
adopt from	a clear and concise manner to different groups.						
UGC or the	PO3: Critical thinking:						
University for	Capability to apply the analytic thought to a body of knowledge; analyse						
their	and evaluate the proofs, arguments, claims, beliefs on the basis of						
Programme)	empirical evidences; identify relevant assumptions or implications;						
	formulate coherent arguments; critically evaluate practices, policies and						
	theories by following scientific approach.						

2

	PO4: Problem solving:
	Capacity to extrapolate from what one has learned and apply their
	competencies to solve different kinds of non-familiar problems, rather
	than replicate curriculum content knowledge; and apply one's learning to
	real life situations.
	PO5: Analytical reasoning:
	Ability to evaluate the reliability and relevance of evidence; identify
	logical flaws and holes in the arguments of others; analyze and
	synthesize data from a variety of sources; draw valid conclusions and
	support them with evidence and examples, and addressing opposing
	viewpoints.
	PO6: Research-related skills:
	A sense of inquiry and capability for asking relevant/appropriate
	questions, problem arising, synthesising and articulating; Ability to
	recognise cause-and-effect relationships, define problems, formulate
	hypotheses, test hypotheses, analyse, interpret and draw conclusions
	from data, establish hypotheses, predict cause-and-effect relationships;
	ability to plan, execute and report the results of an experiment or
	investigation
	PO7: Cooperation/Team work:
	Ability to work effectively and respectfully with diverse teams; facilitate
	cooperative or coordinated effort on the part of a group, and act together
	as a group or a team in the interests of a common cause and work
	efficiently as a member of a team
	PO8: Scientific reasoning:
	Ability to analyse, interpret and draw conclusions from
	quantitative/qualitative data; and critically evaluate ideas, evidence and
	experiences from an open-minded and reasoned perspective.
	PO9: Reflective thinking:
	Critical sensibility to lived experiences, with self-awareness and
	reflexivity of both self and society.
	PO10 Information/digital literacy:
	Capability to use ICT in a variety of learning situations, demonstrate
	ability to access, evaluate, and use a variety of relevant information
	sources; and use appropriate software for analysis of data.
	PO 11 Self-directed learning:
	Ability to work independently, identifies appropriate resources required
	for a project, and manages a project through to completion.
	PO 12 Multicultural competence:
	Possess knowledge of the values and beliefs of multiple cultures and a
	global perspective; and capability to effectively engage in a multicultural
	society and interact respectfully with diverse groups.
	PO 13: Moral and ethical awareness/reasoning:
	Ability to embrace moral/ethical values in conducting one's life,
	formulates a position/argument about an ethical issue from multiple
	perspectives, and use ethical practices in all work. Capable of
	demonstrating the ability to identify ethical issues related to one's work,
	avoid unethical behaviour such as fabrication, falsification or
	misrepresentation of data or committing plagiarism, not adhering to
1	intellectual property rights; appreciating environmental and sustainability

	issues; and adopting objective, unbiased and truthful actions in all
	aspects of work.
	PO 14: Leadership readiness/qualities:
	Capability for mapping out the tasks of a team or an organization, and
	setting direction, formulating an inspiring vision, building a team who
	can help achieve the vision, motivating and inspiring team members to
	engage with that vision, and using management skills to guide people to
	the right destination, in a smooth and efficient way.
	PO 15: Lifelong learning:
	Ability to acquire knowledge and skills, including "learning how to
	learn'', that are necessary for participating in learning activities
	throughout life, through self-paced and self-directed learning aimed at
	personal development, meeting economic, social and cultural objectives,
	and adapting to changing trades and demands of work place through
	knowledge/skill development/reskilling.
Programme	PSO1: Placement:
Specific	To prepare the students who will demonstrate respectful engagement
Outcomes:	with others' ideas, behaviors, and beliefs and apply diverse frames of
	reference to decisions and actions.
(These are	PSO 2: Entrepreneur:
mere	To create effective entrepreneurs by enhancing their critical thinking,
guidelines.	problem solving, decision making and leadership skill that will facilitate
Faculty can	start-ups and high potential organizations
create POs	PSO3: Research and Development:
based on their	Design and implement HR systems and practices grounded in research
curriculum or	that complies with employment laws, leading the organization towards
adopt from	growth and development.
UGC or	PSO4: Contribution to Business World:
University for	To produce employable, ethical and innovative professionals to be able
their	to sustain in the dynamic business world.
Programme)	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

Part 1. Language – Tamil Part.2 English 1.3 Core Course – CC I	3 3 5	6 6 5	Part1. Language – Tamil Part2 English	3	6 6	Part1. Language – Tamil	3	6	Part1.	3	6	5.1 Core	4	5	6.1 Core	4	6
English 1.3 Core	-	-	English	3	6				Language – Tamil			Course – \CC IX			Course – CC XIII		
	5	5				Part2 English	3	6	Part2 English	3	6	5.2 Core Course – CC X	4	5	6.2 Core Course – CC XIV	4	6
			23 Core Course – CC III	5	5	3.3 Core Course – CC V	5	5	4.3 Core Course – CC VII Core Industry Module	5	5	5. 3.Core Course CC -XI	4	5	6.3 Core Course – CC XV	4	6
1.4 Core Course – CC II	5	5	2.4 Core Course – CC IV	5	5	3.4 Core Course – CC VI	5	5	4.4 Core Course – CC VIII	5	5	5. 4.Core Course –/ Project with viva- voce CC -XII	4	5	6.4 Elective -VII Generic/ Discipline Specific	3	5
1.5 Elective I Generic/ Discipline Specific	3	4	2.5 Elective II Generic/ Discipline Specific	3	4	3.5 Elective III Generic/ Discipline Specific	3	4	4.5 Elective IV Generic/ Discipline Specific	3	3	5.5 Elective V Generic/ Discipline Specific	3	4	6.5 Elective VIII Generic/ Discipline Specific	3	5
1.6 Skill Enhancement Course SEC-1	2	2	2.6 Skill Enhancement Course SEC-2	2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	1	4.6 Skill Enhancement Course SEC-6	2	2	5.6 Elective VI Generic/ Discipline Specific	3	4	6.6 Extension Activity	1	-
1.7 Skill Enhancement -(Foundation Course)	2	2	2.7 Skill Enhancement Course –SEC- 3	2	2	3.7 Skill Enhancement Course SEC-5	2	2	4.7 Skill Enhancement Course SEC-7	2	2	5.7 Value Education	2	2	6.7 Professional Competency Skill	2	2
						3.8 E.V.S.	-	1	4.8 E.V.S	2	1	5.8 Summer Internship /Industrial Training	2				
	23	30		23	30		22 Total –	30		25	30		26	30		21	30

Credit Distribution for UG Programmes

5 –Yea	ar Integrated Programme M.Sc., Physics C	redit Distri	bution for fir	st 3 years
Part	Details	No. of Papers	Total Credits	Part Credits
Part-I	Language (3 Credits)	4	12	12
Part-II	English (3 Credits)	4	12	12
	Core Theory (5 Credits)	4	20	
	Core Theory (4 Credits)	6	24	
Dout III	Core Practical (3 Credits)	6	18	96
Part-III	Project (4 Credits)	1	4	- 86
	Allied Theory (3 Credits)	4	12	
	Allied Practical (2 Credits)	4	8	
	Foundation Course (2 Credits)	1	2	
	Skills Enhancement Course (SEC) NME (2 Credits)	8	16	
Part-IV	Elective Core (2 Credits)	4	8	31
	Summer Internship (1 Credits)	1	1	
	EVS (2 Credit)	1	2	
	Value Education (2 Credits)	1	2	
Part-V	Extension Activity (NSS/NCC/YRC/Physical Education) (1 Credit)	1	1	1
		50	142	142

Consolidated Semester wise and Component wise Credit Distribution

Parts	Sem-I	Sem-II	Sem-III	Sem-IV	Sem-V	Sem-VI	Total Credits
Part-I	3	3	3	3	-	-	12
Part-II	3	3	3	3	-	-	12
Part-III	13	13	13	13	23	19	84
Part-IV	4	4	4	6	3	2	31
Part-V	-	-	-	-	-	1	1
Total	23	23	23	25	26	22	142

Credit Distribution for Integrated M.Sc., Physics Programme, Courses with Laboratory Hours for First Three Years

Part	List of Courses					
		Credit	Hours/week	CIA	ESE	Passing Minimum
	First Semester	-	r .			
Part-I	Language	3	4	25	75	50
Part-II	English	3	4	25	75	50
	Core Theory 1 – Properties of Matter and Acoustics	5	5	25	75	50
Part-III	Core Practical 1 – Properties of Matter	3	6*	25	75	50
1 art-111	Allied Theory 1 – Allied Mathematics 1	3	3	25	75	50
	Allied Practical 1 – Allied Mathematics 1	2	4	25	75	50
	SEC-1 (Choose one from the List of Skill	2	2	25	75	50
Part-IV	Enhancement Course (Includes Entrepreneurial Based)					
	Foundation Course	2	2	25	75	50
		23	30			
	Second Semester					
Part-I	Language	3	4	25	75	50
Part-II	English	3	4	25	75	50
	Core Theory 2 – Heat, Thermodynamics and Statistical Physics	5	5	25	75	50
Part-III	Core Practical 2 – Heat and Sound	3	6	25	75	50
1 urt 111	Allied Theory 2 – Allied Mathematics 2	3	3	25	75	50
	Allied Practical 2 – Allied Mathematics 2	2	4	25	75	50
	SEC-2 (Choose one from the List of Skill	2	2	25	75	50
	Enhancement Course (Includes Entrepreneurial Based)	2	2	20	15	50
Part-IV	SEC-3 (choose one from the List of Skill Enhancement	2	2	25	75	50
	Course (Discipline / Subject Specific))			23	15	50
		23	30			
	Third Semester	1	1	1	1	
Part-I	Language	3	4	25	75	50
Part-II	English	3	4	25	75	50
	Core Theory 3 – Mechanics	5	5	25	75	50
Part-III	Core Practical 3 – Oscillations, Waves and Electronics	3	6	25	75	50
1 art-111	Allied Theory 1 – Allied Chemistry 1	3	3	25	75	50
	Allied Practical 1 – Allied Chemistry Practical 1	2	4	25	75	50
	SEC-4 (Choose one from the List of Skill	2	2	25	75	50
Part-IV	Enhancement Course (Includes Entrepreneurial Based)					
1 a1t-1 v	SEC-5 (choose one from the List of Skill Enhancement	2	2	25	75	50
	Course (Discipline / Subject Specific))					
		23	30			
	Fourth Semester					
Part-I	Language	3	4	25	75	50
Part-II	English	3	4	25	75	50
Part-III	Core Theory 4 – Optics and Laser Physics	5	5	25	75	50

	Core Practical 4 – Optics	3	5	25	75	50
	Allied Theory 2 – Allied Chemistry 2	3	3	25	75	50
	Allied Practical 2 – Allied Chemistry Practical 2	2	4	25	75	50
	SEC-6 (choose one from the List of Skill Enhancement	2	2	25	75	50
	Course (Discipline / Subject Specific))					
Part-IV	SEC-7 (choose one from the List of Skill Enhancement	2	2	25	75	50
	Course (Discipline / Subject Specific))					
	EVS	2	1	25	75	50
		25	30			
	Fifth Semester		•	L		
	Core Theory 5 – Electricity, Magnetism and	4	4	25	75	50
	Electromagnetism					
	Core Theory 6 – Atomic and Nuclear Physics	4	4	25	75	50
	Core Theory 7 – Analog and Communication	4	4	25	75	50
Part -III	Electronics					
	Core Practical 5 – Electricity and Modern Physics	3	6	25	75	50
	Elective Course 1 (Generic/Discipline Specific) EC 1	2	2	25	75	50
	Elective Course 2 (Generic/Discipline Specific) EC 2	2	2	25	75	50
	Project with viva-voce	4	6	25	75	50
	Internship / Industrial Training (Carried out in II Year	1	-	25	75	50
Part-IV	Summer Vocation) (30 Hours)					
	Value Education	2	2	25	75	50
		26	30			
	Sixth Semester					
	Core Theory 8 – Quantum Mechanics and Relativity	4	4	25	75	50
	Core Theory 9 – Solid State Physics	4	4	25	75	50
	Core Theory 10 – Digital Electronics and	4	4	25	75	50
Part-III	Microprocessor 8085					
ralt-III	Core Practical 6 – Digital Electronics and	3	6	25	75	50
	Microprocessor					
	Elective Course 3 (Generic/Subject Specific) EC 3	2	2	25	75	50
	Elective Course 4 (Generic/Subject Specific) EC 4	2	2	25	75	50
Part-IV	Skill Enhancement Course -SEC-8 (Discipline/Subject	2	2	25	75	50
	Specific) / Professional Competency					
Part-V	Extension Activity, NSS/NCC/YRC/Physical	1	-	25	75	50
r al t- v	Education (Outside College Hours)					
		22	24			
		14				
		2				

*Both the theory and the practical End Semester Examination duration is 3 hours

LIST OF ELECTIVES COURSES (EC)

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE

- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE
- 10. MEDICAL INSTRUMENTATION

LIST OF NON-MAJOR ELECTIVES (NME)

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. MEDICAL PHYSICS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

LIST OF SKILL ENHANCEMENT COURSE (INCLUDES ENTREPRENEURIAL BASED)

- 1. PLOTTING SKILLS
- 2. INTRODUCTION TO PYTHON PROGRAMMING
- 3. INTRODUCTION TO ANDROID MOBILE APPLICATION DEVELOPMENT
- 4. INTRODUCTION TO WEB DEVELOPMENT

LIST OF SKILL ENHANCEMENT COURSE (DISCIPLINE / SUBJECT SPECIFIC)

- 1. PHYSICS WORKSHOP SKILLS
- 2. ELECTRICAL CIRCUIT NETWORK SKILLS
- 3. BASIC INSTRUMENTATION SKILLS
- 4. WEATHER FORECASTING SKILLS
- 5. RENEWABLE ENERGY AND ENERGY HARVESTING
- 6. MATERIALS PROCESSING SKILLS

PASSING MINIMUM

Continuous Internal Assessment (CIA) – No passing minimum End Semester Examination (ESE) – 50% Cumulative Aggregate – 50%

ESE QUESTION PAPER PATTERN for Core theory courses

Part – A	Part- B Either (a) or (b)	Part- C Either (a) or (b)
10×1=10	5×5=25	5×8=40
MCQ	Only problems covered in tutorials	Descriptive type

CIA QUESTION PAPER PATTERN for all theory courses

Part – A	7×1=7	Part- B Any two of three 2×5=10	Part- C Any One of three 1×8=8
MCQ		Only problems covered in tutorials / Descriptive	Descriptive type

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation laws of momentum, energy – types of collisions –angular momentum– alternate energy sources– real life examples
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion – comparison of light and sound waves – free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chand and Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chand and Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chand and Co.
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSEOUTCOMES:

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSEOU TCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

COURSE	FIRST SEMESTER – CORE THEORY 1
COURSETITLE	PROPERTIES OF MATTER AND ACOUSTICS
CREDITS	5
COURSE	Study of the properties of matter leads to information which is of
OBJECTIVES	practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.

UNITS	COURSE DETAILS
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)
UNIT-II	BENDING OF BEAMS: cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope
UNIT-III	FLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity: definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature
UNIT-IV	 WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstring apparatus
UNIT-V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves

	PROFESSIONAL COMPONENTS: expert lectures -seminars
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	The second se
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chand and Co.
	2. BrijLal and N. Subrahmanyam, 2003, Properties of Matter,
	S.Chand and Co
TEXT BOOKS	3. D.R.Khanna and R.S.Bedi, 1969, Textbook of Sound,
	Atma Ramand sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan, 2012, Properties of Matter, S.Chand and Co.
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition, R. Chand and Co.
	3. A.P French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	how-do-they-work
	2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html</u>
	3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
WEB	4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s</u>
RESOURCES	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESUURCES	how-do-they-work
	6. <u>https://learningtechnologyofficial.com/category/fluid-mechanics-</u>
	<u>lab/</u>
	7. <u>http://www.sound-physics.com/</u>
	8. <u>http://nptel.ac.in/courses/112104026/</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1 Relate elastic behavior in terms of three modulii of elasti and working of torsion pendulum.						
	CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.					
COUNCIDANT	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.					
COURSEOUT COMES	CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains					
	C05	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves					

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	М	М	S	М	S
CO2	М	S	S	S	М	М	S	М	S	S
CO3	S	М	S	М	S	S	М	S	S	S
CO4	S	S	S	S	S	М	S	М	М	М
CO5	М	М	S	S	М	S	S	S	S	М

COURSE	FIRST SEMESTER –CORE PRACTICAL 1
COURSETITLE	PROPERTIES OF MATTER
CREDITS	3
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.
- 23. Velocity of sound through wire using sonometer
- 24. To verify laws of transverse vibration using sonometer
- 25. To verify laws of transverse vibration using Melde's apparatus
- 26. Any other practicals

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – CORE THEORY 2
COURSETITLE	HEAT, THERMODYNAMICS and STATISTICAL PHYSICS
CREDITS	5
COURSE	The course focuses to understand a basic in conversion of
OBJECTIVES	temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNITS	COURSEDETAILS
UNIT-I	CALORIMETRY: specific heat capacity – specific heat capacity of gases C_P and C_V – Meyer's relation – Joly's method for determination of C_V – Regnault's method for determination of C_P LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous plug experiment – Joule-Thomson effect –Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.
UNIT-II	THERMODYNAMICS-I: zeroth law and first law of thermodynamics – P-V diagram – heat engine –efficiency of heat engine – Carnot's engine, construction, working and efficiency of petrol engine and diesel engines – comparison of engines.
UNIT-III	THERMODYNAMICS-II: second law of thermodynamics – entropy of an ideal gas – entropy change in reversible and irreversible processes – T-S diagram –thermodynamical scale of temperature – Maxwell's thermodynamical relations –Clasius- Clapeyron's equation (first latent heat equation) – third law of thermodynamics – unattainability of absolute zero – heat death.
UNIT-IV	HEATTRANSFER: modes of heat transfer: conduction, convection and radiation.Conduction: thermal conductivity – determination of thermal conductivity of a good conductor by Forbe's method – determination of thermal conductivity of a bad conductor by Lee's disc method.Radiation: black body radiation (Ferry's method) – distribution of energy in black body radiation – Wien's law and Rayleigh Jean's law –Planck's law of radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.
UNIT-V	STATISTICALMECHANICS: definition of phase-space – micro and macro states – ensembles –different types of ensembles – classical and quantum Statistics – Maxwell-Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism

[
	1. Brijlal and N. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chand and Co.
	2. Narayanamoorthy and KrishnaRao, 1969, Heat, Triveni
	Publishers, Chennai.
	3. V.R.Khanna and R.S.Bedi, 1998 1 st Edition, Text book of
TEXT BOOKS	Sound, Kedharnaath Publish and Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and Oscillations,
	Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.Chand andCo.
	6. R.Murugeshan and Kiruthiga Sivaprasath, Thermal Physics,
	S.Chandand Co.
	1. J.B.Rajam and C.L.Arora, 1976, Heat and Thermodynamics,
	8 th edition, S.Chand and Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand and
	Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
BOOKS	Edition, S. Chand and Co.
	4. Resnick, Halliday and Walker, 2010, Fundamentals of Physics,
	6th Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. https://youtu.be/M_5KYncYNyc
	2. https://www.youtube.com/watch?v=4M72kQulGKkandvl=en
	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
WEB	· · · · ·
RESOURCES	Mechanics I: Statistical Mechanics of Particles Physics MIT
	<u>OpenCourseWare</u>
	4. <u>http://www.freebookcentre.net/Physics/Physics-Books-</u>
	<u>Online.html</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	~~~	
	CO1	Acquires knowledge on how to distinguish between
		temperature and heat. Introduce him/her to the field of
		thermometry and explain practical measurements of high
		temperature as well as low temperature physics. Student
COURSEOUT		identifies the relationship between heat capacity, specific heat
COMES		capacity. The study of Low temperature Physics sets the basis
		for the students to understand cryogenics, superconductivity,
		superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the
		implications of the laws of Thermodynamics in diesel and
		petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz
		efficiency by problems. Gets an insight into thermodynamic
		properties like enthalpy, entropy
	CO4	Study the process of thermal conductivity and apply it to good
		and bad conductors. Quantify different parameters related to
		heat, relate them with various physical parameters and analyse
		them
	CO5	Interpret classical statistics concepts such as phase space,
		ensemble, Maxwell-Boltzmann distribution law. Develop the
		statistical interpretation of Bose-Einstein and Fermi-Dirac.
		Apply to quantum particles such as photon and electron
	1	repris to quantum particles such as photon and electron

#### **MAPPING WITH PROGRAM OUT COMES:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	SECOND SEMESTER – CORE PRACTICAL 2
COURSETITLE	HEAT AND SOUND
CREDITS	3
COURSE	Apply their knowledge gained about the concept of heat and sound
<b>OBJECTIVES</b>	waves, resonance, calculate frequency of ac mains set up
	experimentation to verify theories, quantify and analyse, able to do
	error analysis and correlate results

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Frequency of AC by using sonometer.
- 15. Newton's Law of cooling
- 16. Measurement of Planck's constant
- 17. To study the variation of thermo emf for thermometer with difference of Temperature of its junctions
- 18. Any other practicals

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	THIRD SEMESTER - CORE
COURSETITLE	MECHANICS
CREDITS	5
COURSE OBJECTIVES	This course allows the students: To have a basic understanding of the laws and principles of mechanics; To apply the concepts of forces existing in the system; To understand the forces of physics in everyday life; To visualize conservation laws; To apply Lagrangian equation to solve complex problems.

UNITS	COURSEDETAILS
	LAWS OF MOTION: Newton's Laws – forces – equations of motion – frictional force – motion of aparticlein a uniform gravitational field – types of everyday forces in Physics. <i>Gravitation</i> : Classical theory of gravitation–Kepler's laws, Newton's law of gravitation – Determination of G by Boy's
UNIT-I	<ul> <li>method – Earth-moon system – weightlessness – earth satellites –</li> <li>parking orbit – earth density – mass of the Sun – gravitational</li> <li>potential – velocity of escape – satellite potential and kinetic</li> <li>energy –Einstein's theory of gravitation – introduction –principle</li> <li>of equivalence – experimental tests of general theory of relativity –</li> <li>gravitational red shift – bending of light – perihelion of mercury.</li> </ul>
UNIT-II	CONSERVATION LAWS OF LINEAR AND ANGULAR MOMENTUM: conservation of linear and angular momentum – Internal forces and momentum conservation – center of mass – examples – general elastic collision of particles of different masses – system with variable mass – examples – conservation of angular momentum – torque due to internal forces – torque due to gravity – angular momentum about center of mass – proton scattering by heavy nucleus.
UNIT-III	<b>CONSERVATION LAWS OF ENERGY:</b> Introduction – significance of conservation laws – law of conservation of energy concepts of work- power – energy – conservative forces – potential energy and conservation of energy in gravitational and electric field – examples –non-conservative forces – general law of conservation of energy.
UNIT-IV	RIGID BODY DYNAMICS: translational and rotational motion – angular momentum – moment of inertia – general theorems of moment of inertia – examples – rotation about fixed axis – kinetic energy of rotation – examples – body rolling along a plane surface – body rolling down an inclined plane – gyroscopic precision – gyrostatic applications.
UNIT-V	LAGRANGIAN MECHANICS: generalized coordinates – degrees of freedom – constraints - principle of virtual work and D' Alembert's Principle – Lagrange's equation from D' Alembert's principle – application –simple pendulum – Atwood's machine.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism

	1
	<ol> <li>J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing house, Mumbai.</li> <li>P.Durai Pandian, Laxmi DuraiPandian, MuthamizhJayapragasam,2005, Mechanics, 6threvised edition, S.Chand and Co.</li> </ol>
TEXT BOOKS	<ol> <li>D. S.Mathur and P. S.Hemne, 2000, Mechanics, Revised Edition, S.Chand and Co.</li> <li>Narayanamurthi, M.andNagarathnam. N, 1998, Dynamics. The National Publishing, Chennai.</li> <li>Narayanamurthi, M. and Nagarathnam, N, 1982, Statics,</li> </ol>
	Hydrostatics and Hydrodynamics, The National Publishers, Chennai.
REFERENCE BOOKS	<ol> <li>Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and Wesely.</li> <li>Halliday, David and Robert, Resnick, 1995, Physics Vol.I. New Age, International, Chennai.</li> <li>Halliday, David Robert Resnick and Walker Jearl, 2001, Fundamentals of Physics, John Wiley, New Delhi</li> </ol>
WEB RESOURCES	<ol> <li><u>https://youtu.be/X4_K-XLUIB4</u></li> <li><u>https://nptel.ac.in/courses/115103115</u></li> <li>https://www.youtube.com/watch?v=p075LPq3Eas</li> <li><u>https://www.youtube.com/watch?v=mH_pS6fruyg</u></li> <li><u>https://onlinecourses.nptel.ac.in/noc22_me96/preview</u></li> <li><u>https://www.youtube.com/watch?v=tdkFc88Fw-M</u></li> <li><u>https://onlinecourses.nptel.ac.in/noc21_me70/preview</u></li> </ol>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion
	CO2	Acquire the knowledge on the conservation laws
COURSEOU TCOMES	CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non- conservative forces
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	М	S	S
CO2	S	S	S	М	S	М	S	S	S	М
CO3	S	S	S	S	S	S	М	S	М	S
CO4	М	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	М	S	S	S	М

COURSE	THIRD SEMESTER - COREPRACTICAL 3
COURSETITLE	OSCILLATIONS, WAVES AND ELECTRONICS
CREDITS	3
COURSE	Construct experiments simple harmonic motion, sound waves and
<b>OBJECTIVES</b>	study the characteristics of discrete components such diode, transistort

- 1. Simple pendulum
- 2. Compound pendulum
- 3. Bifilar Pendulum
- 4. Determination of frequency of an electrically maintained tuning fork
- 5. To verify the laws of transverse vibration using sonometer.
- 6. To verify the laws of transverse vibration using Melde's apparatus.
- 7. To compare the mass per unit length of two strings using Melde's apparatus.
- 8. PN diode characteristics
- 9. Zener Diode characteristics
- 10. Construction of Full wave bridge rectifier with capacitor
- 11. Construction of Dual Power supply
- 12. Low pass filter and high pass filter
- 13. CE mode transistor characteristics
- 14. CB mode transistor characteristics
- 15. CC mode transistor characteristics
- 16. RC coupled CE transistor amplifier single stage.
- 15. Clipping and clamping circuits
- 16. Any other practicals

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER – CORE THEORY 4
COURSETITLE	OPTICS and LASER PHYSICS
CREDITS	5
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behaviour of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of optical systems and methods to minims aberrations; To understand the working and applications of laser

UNITS	COURSEDETAILS
	<b>LENS AND PRISMS:</b> Fermat's principle of least time – postulates
	of geometrical optics – thick and thin lenses – focal length, critical
	thickness, power and cardinal points of a thick lens – narrow angled
	prisms.
	<i>Lens</i> : aberrations: spherical aberration, chromatic aberrations, coma,
	and astigmatism- curvature of the field - distortion - chromatic
	aberrations methods.
UNIT-I	Prism: dispersion, deviation, aberrations - applications rainbows and
	halos, constant deviation spectroscope.
	<i>Eyepieces</i> : advantage of an eyepiece over a simple lens – Huygen's
	and Ramsden's eyepieces, construction and working -merits and
	demerits of the eyepiece.
	Resolving power: Rayleigh's criterion for resolution – limit of
	resolution for the eye – resolving power of, (i) Prism (ii) grating (iii)
	telescope
	<b>INTERFERENCE:</b> division of wave front, Fresnel's biprism –
	fringes with white light – division of amplitude: interference in thin
	films due to, (i) reflected light, (ii) transmitted light – colours of thin
UNIT-II	films applications – air wedge – Newton's rings.
	<i>Interferometers</i> : Michelson's interferometer – applications, (i)
	determination of the wavelength of a monochromatic source of light,
	(ii) determination of the wavelength and separation $D_1$ and $D_2$ lines
	of sodium light, (iii) determination of a thickness of a mica sheet.
	<b>DIFFRACTION:</b> Fresnel's assumptions – zone plate – action of
	zone plate for an incident spherical wave front – differences between
	a zone plate and a convex lens –Fresnel type of diffraction –
	diffraction pattern due to a straight edge – positions of maximum and
UNIT-III	minimum intensities – diffraction due to a narrow slit –Fraunhofer
	type of diffraction – Fraunhofer diffraction at a single slit – plane
	diffraction grating– experiment to determine wavelengths – width of
	principal maxima.
UNIT-IV	<b>POLARISATION:</b> optical activity – optically active crystals –
	polarizer and analyser–double refraction – optic axis, principal plane

	<ul> <li>Huygens's explanation of double refraction in uniaxial crystals – polaroids and applications – circularly and elliptically polarized light –quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter – experiment to determine specific rotatory power.</li> </ul>
UNIT-V	<b>LASERS:</b> general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – CO ₂ laser (principle and working) semiconductor laser – laser applications – holography.
UNIT-VI	<b>PROFESSIONAL COMPONENTS:</b> expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	<ol> <li>Subramaniam. N andBrijlal, 2014, Optics, 25thEd,S.Chandand Co.</li> <li>P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi.</li> <li>V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.</li> </ol>
REFERENCE BOOKS	<ol> <li>Sathyaprakash, 1990,Optics,VII edition, RatanPrakashanMandhir, New Delhi.</li> <li>AjoyGhatak, 2009,Optics, 4thedition, PHIPvt Ltd, New Delhi.</li> <li>D.Halliday,R.Resnick and J. Walker, 2001, Fundamentals of Physics,6th edition, Willey, New York.</li> <li>JenkinsA.Francis and White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill Inc., NewDelhi.</li> </ol>
WEB RESOURCES	<ol> <li><u>https://science.nasa.gov/ems/</u></li> <li><u>https://www.youtube.com/watch?v=tL3rNc1G0qQandlist=RDCM</u> <u>UCzwo7UIGkb-8Pr6svxWo-LAandstart_radio=1andt=2472</u></li> <li><u>https://science.nasa.gov/ems/</u></li> <li><u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/ index.html</u></li> <li><u>http://www.thephysicsmill.com/2014/03/23/sky-blue-lord- rayleigh-sir-raman-scattering/</u></li> </ol>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces
	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer
COURSEOU	CO3	Extend the knowledge about nature of light through diffraction
TCOMES		techniques; apply mathematical principles to analyse the optical instruments
	CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and
		UV spectroscopy and understand their instrumentation and
		application in industries

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	М	М	М	S	S	М	М
CO2	М	S	М	S	М	S	М	М	S	S
CO3	S	М	S	S	S	М	S	S	М	М
CO4	S	М	S	М	М	S	М	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

COURSE	FOURTH SEMESTER - CORE PRACTICAL 4
COURSETITLE	OPTICS
CREDITS	3
COURSE	Demonstrate various optical phenomena principles, working, apply with
<b>OBJECTIVES</b>	various materials and interpret the results.

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searles goniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determination of wire using Laser.
- 17. Focal length of convex lense
- 18. Focal length of concave lense
- 19. Diffraction grating Normal incidence.
- 20. Diffraction grating minimum deviation.
- 21. Diffraction at a wire.
- 22. Specific rotation of sugar solution.
- 23. Bi-prism Determination of  $\Box$ .
- 24. Thickness of a thin film of Bi-prism
- 25. Brewster's law polarization
- 26. Double refraction ( $\Box$  e and  $\Box$  o)
- 27. Y by Corlus method.
- 28. Dispersive power of plane diffraction grating.
- 29. Diffraction a straight edge.
- 30. Kundt's tube Velocity of sound, Adiabatic Young's modulus of the material of the rod.
- 31. Forbe's method Thermal conductivity of a metal rod.
- 32. Spectrometer– Grating Normal incidence Wave length of Mercury spectral lines.
- 33. Spectrometer Grating Minimum deviation Wave length of Mercury spectral lines.
- 34. Spectrometer (i-d) curve.
- 35. Spectrometer (i-i') curve.
- 36. Spectrometer Narrow angled prism.
- 37. Any other practicals

<b>Continuous Internal Assessment</b>	<b>End Semester Examination</b>	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – CORE THEORY 3
COURSETITLE	ELECTRICITY, MAGNETISM ANDELECTROMAGNETISM
CREDITS	4
COURSE OBJECTIVES	To classify materials based on their electrical and magnetic properties. To analyse the working principles of electrical gadgets. To understand the behaviour of dc, ac and transient currents. To know about the communication by electromagnetic waves.

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: capacitor -
	principle - capacitance of spherical and cylindrical capacitors -
	capacitance of a parallel plate capacitor (with and without dielectric
UNIT-I	slab) – effect of dielectric –Carey Foster bridge – temperature
UNII-I	coefficient of resistance - Seebeck effect - laws of thermo emf -
	Peltier effect – Thomson effect – thermoelectric diagrams –uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
	solenoid – Helmholtz tangent galvanometer –force on a current
UNIT-II	element by magnetic field – force between two infinitely long
0111-11	conductors – torque on a current loop in a field - moving coil
	galvanometer – damping correction – Ampere's circuital law –
	differential form – divergence of magnetic field – magnetic induction
	due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	magnetic induction B – magnetization M - relation between B, H and
	M – magnetic susceptibility – magnetic permeability – experiment to
	draw B-H curve - energy loss due to hysteresis - Importance of
UNIT-III	hysteresis curves - Faraday and Lenz laws -vector form - self-
	induction – coefficient of self-inductance of solenoid – Anderson's
	method – mutual induction – coefficient of mutual inductance
	between two coaxial solenoids – coefficient of coupling - earth
	inductor- determination of angle of $dip(\Phi)$
	TRANSIENT AND ALTERNATING CURRENTS: growth and
	decay of current in a circuit containing resistance and inductance –
UNIT-IV	growth and decay of charge in a circuit containing resistance and
	capacitor – growth and decay of charge in an LCR circuit (expressions
	for charge only) – peak, average and rms values of ac – LCR series
	and parallel circuits – resonance condition – Q factor – power factor.
	MAXWELLS EQUATIONS AND ELECTROMAGNETIC
	<b>WAVES:</b> Maxwell's equations in vacuum, material media– physical significance of Maxwell's equations displacement current plane
UNIT-V	significance of Maxwell's equations –displacement current – plane
	electromagnetic waves in free space – velocity of light – Poynting vector–electromagnetic waves in a linear homogenous media –
	refractive index.
	PROFESSIONAL COMPONENTS:expert lectures –seminars —
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	weomars - measury inputs - social accountability - patriousili

<ol> <li>Sultan Chand and Sons, New Delhi.</li> <li>M. Narayanamurthy and N. Nagarathnam, Electricity and Magnetism, 4th Edition.</li> <li>National Publishing Co., Meerut.</li> </ol>
<ol> <li>Brijlal and Subramanian, Electricity and Magnetism, 6th Edn.,Ratanand Prakash, Agra.</li> <li>Brijlal, N.Subramanyan and JivanSeshan, Mechanics and Electrodynamics (2005),</li> <li>Eurasia Publishing House (Pvt.) Ltd., New Delhi.</li> <li>David J. Griffiths, Introduction to Electrodynamics, 2ndEdn. 1997, Prentice Hall of</li> <li>India Pvt. Ltd., New Delhi</li> <li>D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics, 6thEdn., Wiley, NY, 2001.</li> </ol>
<ul> <li>8. <u>https://www.edx.org/course/electricity</u></li> <li>9. <u>https://www.udemy.com/courses/</u> electricity</li> <li>10. <u>https://www.edx.org/course/magnetism</u></li> <li>11. http://www.hajim.rochester.edu/optics/undergraduate/courses.html</li> </ul>

<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.
	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.
COURSEOUT	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
COMES	CO4	Analyze the time variation of current and potential difference in AC circuits.
	CO5	Relate different physical quantities used to explain magnetic properties of materials.

#### **MAPPING WITH PROGRAM OUT COMES:**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	FIFTH SEMESTER - CORE
COURSE TITLE	ATOMIC and NUCLEAR PHYSICS
CREDITS	4
OBJECTIVES	To make students understand the development of atom models, quantum numbers, coupling schemes and analysis of magnetic moments of an electrons; To gain knowledge on excitation and ionization potentials, splitting of spectral lines in magnetic and electric fields; To get knowledge on radioactive decay; To know the concepts used in nuclear reaction; to understand the quark model of classification of elementary particles.

UNITS	COURSE DETAILS
	<b>VECTOR ATOM MODEL:</b> introduction to atom model – vector
	atom model – electron spin –spatial quantisation– quantum
	numbers associated with vector atom model – L-S and J-J
UNIT-I	coupling – Pauli's exclusion principle – magnetic dipole moment
	due to orbital motion and spin motion of the electron – Bohr
	magnetron – Stern-Gerlach experiment – selection rules – intensity
	rule.
	ATOMIC SPECTRA: origin of atomic spectra – excitation and
	ionization potentials – Davis and Goucher's method – spectral
UNIT-II	terms and notations – fine structure of sodium D-lines – Zeeman
01111-11	effect –Larmor's theorem – quantum mechanical explanation of
	normal Zeeman effect – anomalous Zeeman effect (qualitative
	explanation) – Paschen-Back effect – Stark effect.
	<b>RADIOACTIVITY:</b> discovery of radioactivity – natural radio
	activity – properties of alpha rays, beta rays and gamma rays –
	Geiger-Nuttal law – alpha particle spectra –Gammow's theory of
UNIT-III	alpha decay (qualitative study) – beta ray spectra – neutrino theory
	of beta decay – nuclear isomerism – internal conversion – non-
	conservation of parity in weak interactions.
	NUCLEAR REACTIONS: conservation laws of nuclear reaction
	– Q-value equation for a nuclear reaction – threshold energy –
UNIT-IV	scattering cross section – artificial radio activity – application of
	radio isotopes – classification of neutrons – models of nuclear
	structure – liquid drop model – shell model.
	ELEMENTARY PARTICLES: classification of elementary
	particles – fundamental interactions – elementary particle quantum
UNIT-V	numbers –iIsospin and strangness quantum number – Conservation
	laws and symmetry – quarks – quark model (elementary ideas
	only) – discovery of cosmic rays – primary and secondary cosmic
	rays – latitude effect– altitude effect.
UNIT-VI	<b>PROFESSIONAL COMPONENTS:</b> expert lectures – seminars –
	- webinars - industry inputs - social accountability - patriotism
τεντ βροινο	1. R. Murugesan, Modern Physics, S. Chand and Co. (All units)
TEXT BOOKS	(Units I and II-Problems) 2 Prijlaland N. Subrahmanyam, Atomia and Nuclear Physica, S.
	2. Brijlaland N. Subrahmanyam, Atomic and Nuclear Physics, S.

	Chand and Co. (All units)
	3. J. B. Rajam, Modern Physics, S. Chand and Co.
	4. Sehgal and Chopra, Modern Physics, Sultan Chand, New Delhi
	5. Arthur Beiser – Concept of Modern Physics, McGraw Hill
	Publication, 6 th Edition.
	1. Perspective of Modern Physics, Arthur Beiser, McGraw Hill.
	2. Modern Physics, S. Ramamoorthy, National Publishing and Co.
	3. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter
	Ltd.,New York,1985.
REFERENCE	4. Tayal, D.C.2000 – Nuclear Physics, Edition, Himalaya Publishing
BOOKS	House, Mumbai.
DOORS	5. Irving Kaplan (1962) Nuclear Physics, Second Edition, Oxford
	and IBH Publish and Co, New Delhi.
	6. J.B. Rajam– Atomic Physics, S. Chand Publication, 7 th Edition.
	7. Roy and Nigam, – Nuclear Physics (1967) First edition, Wiley Eastern
	Limited, New Delhi.
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>
	2. <u>https://makingphysicsfun.files.wordpress.com/2015/01/photoelect</u>
WEB	ric-effect.pptx
RESOURCES	3. https://www.khanacademy.org/science/physics/quantum-
NESUUNCES	physics/in-in-nuclei/v/types-of-decay
	4. https://www.khanacademy.org/science/in-in-class-12th-physics-
	india/nuclei

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	List the properties of electrons and positive rays, define specific charge of positive rays and know about different mass spectrographs.
	CO2	Outline photoelectric effect and the terms related to it, State laws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation.
COURSEO UTCOMES	CO3	Explain different atom models, Describe different quantum numbers and different coupling schemes.
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, Apply selection rule, Analyse Paschen-Back effect, Compare Zeeman and Stark effect.
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	S
<b>CO4</b>	М	S	S	S	S	М	S	М	М	М
CO5	S	М	S	S	М	S	S	М	М	S

COURSE	FIFTH SEMESTER – CORE
COURSETITLE	ANALOG AND COMMUNICATION ELECTRONICS
CREDITS	4
COURSE OBJECTIVES	To study the design, working and applications of semiconducting devices. To construct various electronic circuits. To study them in details. To study the basis of audio and video communication systems and the aspects of satellite and Fibre Optic Communications.

UNITS	COURSE DETAILS
UNIT-I	<b>DIODES:</b> diode characteristics – rectifiers - clipper circuits, clamping circuits. half wave rectifier, center tapped and bridge full wave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of a power supply, qualitative description of shunt capacitor filter, Zener diode as voltage regulator, temperature coefficient of Zener diode.
UNIT-II	<b>TRANSISTOR AMPLIFIERS:</b> transistor configurations: CB, CE CC modes – I-V characteristics and hybrid parameters – DC load line – Q point self-bias – RC coupled CE amplifier –power amplifiers – classification of power amplifiers: A, B, C – push pull amplifiers – tuned amplifiers.
UNIT-III	<b>TRANSISTOR OSCILLATORS:</b> feedback amplifier - principle of feedback, positive and negative feedback of voltage and current gain, advantages of negative feedback - Barkhausen's criterion. Transistor oscillators: Hartely, Colpitt, Phase shift oscillators with mathematical analysis.
UNIT-IV	<b>OPERATIONAL AMPLIFIERS:</b> differential amplifiers – OPAMP characteristics –IC 741 pin configuration – inverting and non-inverting amplifiers – unity follower –summing and difference amplifiers – differentiator and integrator – astable multivibrator (square wave generator) – monostable vibrator
UNIT-V	<b>MODULATION AND DEMODULATION</b> theory of amplitude modulation - frequency modulation – comparison of AM and FM – phase modulation – sampling theorem – pulse width modulation – pulse modulation systems: PAM, PPM, and PCM – demodulation: AM and FM detection - duper heterodyne receiver (block diagram)
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures – seminars – – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	<ol> <li>V.K.Mehta - Principles of Electronics, S.Chand and Co. Ltd., 2004.</li> <li>V.Vijayendran - Integrated Electronics, S.Vishwanathan Publishers, Chennai.</li> <li>B.L. Theraja - A Text Book of Electrical Technology.</li> <li>John D. Ryder - Electronic fundamentals and Applications.</li> <li>Malvino - Electronic Principles, Tata McGraw Hill.</li> </ol>

	1. B. Grob - Basic Electronics, 6 th edition, McGraw Hill, NY, 1989.
DEFEDENCE	2. Herbert Taub and Donald schilling - Digital Integrated Electronics, McGraw Hill, NY.
REFERENCE BOOKS	<ol> <li>Ramakant A. – Op amp principles and linear integrated circuits, Gaykward</li> </ol>
	4. Bagde and S. P. Singh - Elements of Electronics.
	5. Millman and Halkias- Integrated Electronics, Tata McGraw
	Hill.
	1. <u>https://www.queenmaryscollege.edu.in/eresources/undergraduat</u>
	eprogram/py157
WEB	2. <u>www.ocw.mit.edu&gt;&gt; Circuits and Electronics</u>
RESOURCES	3. <u>www.ocw.mit.edu&gt;&gt; Introductory Analog Electronics Laboratory</u>
	4. <u>https:// www.elprocus.com&gt; semiconductor devices</u>
	5. <u>https:// www.britannica.com&gt;technology</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Explain the basic concepts of semiconductors devices.							
COURSEO	CO2	know and classify the basic principles of biasing and transistor							
		amplifiers							
COURSEO UTCOMES	CO3	Acquire the fundamental concepts of oscillators.							
UICOMES	CO4	Understand the working of operational amplifiers							
	CO5	Learn and analyze the operations of sequential and							
		combinational digital circuits							

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	L	S	S	L	S	S	S
CO4	М	S	S	S	S	S	S	М	L	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	FIFTH SEMESTER – CORE PRACTICAL 5
COURSETITLE	ELECTRICITY AND MODERN PHYSICS
CREDITS	3
COURSE	Demonstrate various electrical circuits, bridges circuits and measurement of
OBJECTIVES	physical constants of modern physics.

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire using PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.
- 15. Owen's Bridge
- 16. De Sauty's bridge
- 17. LCR series resonant circuit
- 18. Rydberg's constant
- 19. e/m Thomson method
- 20. h by photocell
- 21. Spectral response of photo conductor (LDR).
- 22. Potentiometer Resistance and Specific resistance of the coil.
- 23. Potentiometer E.M.F of a thermocouple.
- 24. Carey Foster's bridge Temperature coefficient of resistance of the coil.
- 25. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 26. Vibration magnetometer Determination of B_H using circular coil carrying current– Tan B position.
- 27. B.G Figure of Merit Charge Sensitivity
- 28. Any other practicals

ſ	<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
	25	75	100	

COURSE	SIXTHSEMESTER – CORE		
COURSETITLE	QUANTUM MECHANICS AND RELATIVITY		
CREDITS	4		
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyse to understand the solutions.		

UNITS	COURSE DETAILS
	SPECIAL THEORY OF RELATIVITY: Michelson-Morley
	experiment-frames of reference - Galilean Relativity - postulates
	of special theory of relativity – Lorentz transformation –
UNIT-I	consequences – time dilation–concept of simultaneity – Doppler
	effect – length contraction-variation of mass with velocity –
	Einstein's mass-energy relation- relativistic momentum - energy
	relation
	TRANSFORMATION RELATIONS: transformation of
	velocity, mass, energy and momentum - four vector - invariance
	under transformation – Lorentz transformation and velocity
UNIT-II	addition equations in terms of hyperbolic functions.
	<b>GENERAL THEORY OF RELATIVITY:</b> Inertial and
	Gravitational mass – Principle of equivalence – Experimental
	evidences for General theory of Relativity
	PHOTONS AND MATTER WAVES: difficulties of classical
	physics and origin of quantum theory – black body radiation –
	Planck's law – Einstein's photoelectric equation – Compton effect
UNIT-III	– pair production – De Broglie waves – phase velocity and group
	velocity – Davisson and Germer's experiment – uncertainty
	principle – consequences – illustration of Gamma ray microscope.
	<b>OPERATORS AND SCHRÖDINGER EQUATION:</b> postulates
	of quantum mechanics – Wave function and its interpretation –
	Schrödinger's equation – linear operators – Eigenvalue –
UNIT-IV	Hermitian operator – properties of Hermitian operator – observable
	– operators for position, linear Momentum, angular momentum
	components –commutator algebra –commutator between these
	operators –expectation values of position and momentum –
	Ehrenfest theorem.
	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE
	<b>PROBLEMS:</b> one-dimensional problems: (i) particle in a box, (ii)
UNIT-V	barrier penetration problem – quantum mechanical tunneling, (iii) linear harmonic oscillator.
	<i>higher dimensional problems</i> : (i) Rigid rotator (qualitative), (ii)
	Hydrogen atom (qualitative).

	PROFESSIONAL COMPONENTS: expert lectures -seminars -					
UNIT-VI	– webinars – industry inputs – social accountability – patriotism					
	1. Modern Physics, R. Murugeshan, KiruthigaSivaprasath,S.					
	Chand and Co.,17 th Revised Edition, 2014.					
	2. Concepts of Modern Physics, A.Beiser, 6 th Ed., McGraw-Hill,					
	2003.					
	3. Special Theory of Relativity, S. P. Puri, Pearson Education,					
TEXT BOOKS	India, 2013.					
	4. Quantum Mechanics, Ghatak and Loganathan, Macmillan					
	Publications.					
	5. Quantum mechanics – Satyaprakash and Swati Saluja.					
	KedarNath Ram Nathand Co.					
	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition,					
	2014, by Physics					
	2. Quantum Mechanics, V. Devanathan, Narosa Pub. House,					
	Chennai, 2005.					
REFERENCE	3. Quantum Mechanics, V.K. Thangappan, New Age					
BOOKS	International, New Delhi.					
	4. A Text Book of Quantum Mechanics, Mathews and					
	Venkatesan, Tata McGraw Hill, New Delhi.					
	5. Introduction to Quantum Mechanics, Pauling and Wilson,					
	McGraw Hill Co., NewYork.					
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/gapp.html					
	2. <u>https://swayam.gov.in/nd2_arp19_ap83/preview</u>					
WEB	3. https://swayam.gov.in/nd1_noc20_ph05/preview					
RESOURCES	4. https://www.khanacademy.org/science/physics/special-					
	relativity/minkowski-spacetime/v/introduction-to-special-					
	relativity-and-minkowski-spacetime-diagrams					
	relativity and minkowski-spacetime-diagrams					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.							
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity.							
COURSEO UTCOMES	CO3	Realise the wave nature of matter and understand its importance							
	CO4	Derive Schrodinger equation and also realize the use of operators.							
	CO5	Apply Schrödinger equation to simple problems.							

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	SOLID STATE PHYSICS
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.

UNITS	COURSE DETAILS
UNIT-I	<b>BONDING IN SOLIDS, CRYSTAL STRUCTURE:</b> types of bonding –ionic bonding – bond energy of NaCl molecule –covalent bonding – metallic bonding – hydrogen bonding – Van-der-Waals bonding – crystal lattice – lattice translational vectors – lattice with basis – unit cell – Bravais' lattices – Miller indices – procedure for finding them –packing of BCC and FCC structures – structures of NaCl and diamond crystals –reciprocal lattice – reciprocal lattice vectors – properties – reciprocal lattices to SC, BCC and FCC structures – Brillouin zones – X-rays – Bragg's law(simple problems) – experimental methods: Laue method, powder method and rotating crystal method
UNIT-II	<b>ELEMENTARY LATTICE DYNAMICS:</b> lattice vibrations and phonons: linear monoatomicand diatomic chains. acoustical and optical phonons –qualitativedescription of the phonon spectrum in solids –Dulong and Petit's Law – Einstein and Debye theories ofspecific heat of solids – T ³ law (qualitative only)–properties of metals – classical free electron theory of metals(Drude-Lorentz) – Ohm's law – electrical and thermal conductivities – Weidemann- Franz' law –Sommerfeld's quantum free electron theory (qualitative only) – Einstein's theory of specific heat capacity.
UNIT-III	MAGNETIC PROPERTIES OF SOLIDS: permeability, susceptibility, relation between them – classification of magnetic materials – properties ofdia, para, ferro, ferri and antiferromagnetism –Langevin's theory of diamagnetism – Langevin's theory of paramagnetism – Curie-Weiss law – Weiss theory of ferromagnetism(qualitative only) – Heisenberg's quantum theory of ferromagnetism – domains – discussion of B-H curve –hysteresis and energy loss – soft and hard magnets – magnetic alloys.
UNIT-IV	<b>DIELECTRIC PROPERTIES OF MATERIALS:</b> polarization and electric susceptibility –local electric field of an atom – dielectric constant and polarisability – polarization processes: electronic polarization– calculation of polarisability – ionic, orientational and space charge polarization –internal field –Clausius-Mosotti relation – frequency dependence of dielectric constant –dielectric loss – effect of temperature on dielectric constant – dielectric breakdown and its types – classical theory of electric polarisability –normal and

	anomalous dispersion – Cauchy and Sellmeir relations –Langevin-
	Debye equation – complex dielectric constant -optical phenomena.
	Application – plasma oscillations – plasma frequency –plasmons,
	FERROELECTRIC and SUPERCONDUCTING PROPERTIES
	OF MATERIALS: ferroelectric effect: Curie-Weiss Law –
	ferroelectric domains, P-E hysteresis loop – <i>elementary band theory:</i>
	Kronig-Penny model – band gap(no derivation) – conductor,
	semiconductor (P and N type) and insulator –conductivity of
UNIT-V	semiconductor – mobility – Hall effect – measurement of
	conductivity (four probe method) - Hall coefficient.
	Superconductivity: experimental results -critical temperature -
	critical magnetic field – Meissner effect –type-I and type-II
	superconductors – London's equation and penetration depth –
	isotope effect – idea of BCS theory (no derivation)
UNIT-VI	<b>PROFESSIONAL COMPONENTS:</b> expert lectures –seminars —
	webinars – industry inputs – social accountability – patriotism
	1. Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003).
	2. Solid state Physics, Rita John,1st edition, Tata McGraw Hill publishers
	(2014).
	3. Solid State Physics , R L Singhal, Kedarnath Ram Nath and Co., Meerut
	(2003)
	4. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
TEXT BOOKS	5. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw
IEAI DOORS	Hill
	6. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976,
	Cengage Learning
	7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
	8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson
	India
	9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House,
	ND
	1. Puri and Babber – Solid State Physics – S.Chand and Co. New
	Delhi.
	2. Kittel - Introduction to solid state physics, Wiley and Sons, 7 th
	edition.
REFERENCE	3. Raghavan - Materials science and Engineering, PHI
BOOKS	4. Azaroff - Introduction to solids, TMH
	5. S. O. Pillai - Solid State Physics, Narosa publication
	6. A.J. Dekker - Solid State Physics, McMillan India Ltd.
	7. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
WEB	1. https://nptel.ac.in/courses/115105099/
RESOURCES	2. https://nptel.ac.in/courses/115106061/

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.
	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
COURSEO UTCOMES	CO3	Give reason for classifying magnetic material on the basis of their behaviour.
	CO4	Comprehend the dielectric behavior of materials.
	CO5	Appreciate the ferroelectric and super conducting properties of materials.

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
<b>CO4</b>	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	4
COURSE OBJECTIVES	To learn all types of number systems, Boolean algebra and identities, digital circuits for addition and subtraction, flip-flops, registers, counters. To get the knowledge on fundamentals of 8085 architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's and 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND and NOR) –standard representation of logic functions (SOP and POS) – minimization techniques (Karnaughmap: 2, 3, 4 variables).
UNIT-II	adders, half and full adder –subtractors, half and full subtractor – parallel binary adder – magnitude comparator – multiplexers (4:1) and demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3- line-to-8-line), BCD to seven segment decoder.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit andring counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND and NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit and 16- Bit), subtraction (8-Bit and 16-Bit), multiplication (8- Bit), division (8- Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars –           webinars – industry inputs – social accountability – patriotism

	1. M.Morris Mano, "Digital Design "3rd Edition, PHI, New Delhi.					
	2. Ronald J. Tocci. "Digital Systems-Principles and Applications"					
	6/e. PHI. New Delhi. 1999.(UNITS I to IV)					
	3. S.Salivahana and S. Arivazhagan-Digital circuits and design					
TEXT BOOKS	4. Microprocessor Architecture, Programming and Applications with					
	the 8085 – Penram International Publishing, Mumbai Ramesh					
	S.Gaonakar					
	5. Microcomputer Systems the 8086/8088 family – YU-Cheng Liu					
	and GlenSA					
	1. Herbert Taub and Donald Schilling. "Digital Integrated					
	Electronics". McGraw Hill. 1985.					
	2. S.K. Bose. "Digital Systems". 2/e. New Age International.1992.					
REFERENCE	3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters:					
BOOKS	Fundamentals and Applications". TMH.1994.					
DOOKS	4. Malvino and Leach. "Digital Principles and Applications". TMG					
	Hill Edition					
	5. Microprocessors and Interfacing – Douglas V.Hall					
	6. Microprocessor and Digital Systems – Douglas V.Hall					
WEB	1. <u>https://youtu.be/-paFaxtTCkI</u>					
RESOURCES	2. <u>https://youtu.be/s1DSZEaCX_g</u>					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Learn about number systems, Boolean algebra, logical
COURSEO		operation and logic gates
	CO2	Understand the working of adder, subractors, multiplexers and
UTCOMES	02	demultiplexers.
UICOMES	CO3	Get knowledge on flip-flops and storage devices.
	<b>CO4</b>	Gain inputs on architecture of microprocessor 8085.
	CO5	Develop program writing skills .on microprocessor 8085.

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE PRACTICAL 6
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR
CREDITS	3
COURSE	To perform basic experiments on characteristics of electronic devices
<b>OBJECTIVES</b>	and then get into the applications such as amplifiers, oscillators,
	counters, multivibrators. Perform fundamental experiments on
	microprocessor 8085 and learn to write programs by themselves.
Minimum of Fou	rteen Experiments from the list:
1. Transistor Em	
	lator -transistor.
1	ator - transistor.
5	vibrator - transistor.
	vibrator - transistor.
6. FET - charact	
	er (common drain)
8. UJT -characte	
	ith L,C,R -Series resonance.
	ith L,C,R - Parallel resonance.
	mplifier - inverting amplifier and summing.
1	mplifier - non-inverting amplifier and summing.
	mplifier – differential amplifier
1	nplifier - differentiator and integrator.
	mplifier - D/A converter by binary resistor method.
16. 5V, IC Regula	
	of seven segment display.
	ICs – NOT, OR, AND, NOR, NAND, XOR, XNOR
• •	f De Morgan's theorem using ICs –NOT, OR, AND
	versal building block.
	rsal building block.
	lalf subtractor using basic logic gate ICs
23. Microprocess	or 8085 – addition (8 bit only)
24. Microprocess	or 8085 – subtraction (8 bit only)
	or 8085 – multiplication (8 bit only)
26. Microprocess	or 8085 – division (8 bit only)
	or 8085 – square (8 bit only)
-	or 8085 – square root (8 bit only)
	or 8085 – largest/smallest of numbers (8 bit only)
-	or 8085 –ascending/descending order
	or 8085 – Fibonacci series
32. Any other pra	

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

# LIST OF ELECTIVE COURSES (EC)

# STUDENTS CAN CHOOSE ANY OF THESES COURSES IN SEM V AND VI

	COMMUNICATION PHYSICS
	ve: To get a thorough knowledge on transmission and reception of
	different types of communication like fibre optic, radar, satellite,
cellular	
UNITS	COURSE DETAILS
	<b>RADIO TRANSMISSION AND RECEPTION:</b> transmitter –
	modulation types of modulation – amplitude modulation –
	limitations of amplitude modulation – frequency modulation –
UNIT-I	comparison of FM and AM – demodulation- essentials in
	demodulation – receivers: AM radio receivers – types of AM radio
	receivers – stages of superheterodyne radio receiver, advantages –
	FM receiver – difference between FM and AM receivers.
	FIBER OPTIC COMMUNICATION: introduction – basic
	principle of fiber optics – advantages – construction of optical fiber
UNIT-II	– classification based on the refractive index profile – classification
	based on the number of modes of propagation – losses in optical
	fibers – attenuation–advantages of fiber optic communication
	<b>RADAR COMMUNICATION:</b> introduction - basic radar system
	-radar range - antenna scanning -pulsed radar system - search
UNIT-III	radar –tracking radar – moving target indicator Doppler effect-MTI
	principle – CW Doppler radar
	<b>SATELLITE COMMUNICATION:</b> introduction history of
	satellites – satellite communication system – satellite orbits – basic
UNIT-IV	components of satellite communication system – commonly used
	frequency in satellite – communication –multiple access
	communication – satellite communication in India
	MOBILE COMMUNICATION: introduction – concept of cell –
	basic cellular mobile radio system – cell phone – facsimile –
UNIT-V	important features of fax machine – application of facsimile –
	VSAT (very small aperture terminals) modem IPTV (internet
	protocol television) -Wi-Fi-4G (basic ideas)
	1. V.K. Metha, Principles of Electronics, S. Chand and CoLtd.,
TEXT BOOKS	2013
IEAI BOOKS	2. Anokh Singh and Chopra A.K., Principles of communication
	Engineering, S.Chand and Co, 2013
	1. J.S. Chitode, Digital Communications, 2020, Unicorn
REFERENCE	publications
BOOKS	2. Senior John. M, Optical Fiber Communications: Principles and
	Practice, 2009, Pearson Education.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

	ENERGY PHYSICS		
Learning Objec	tive: To get the understanding of the conventional and non-		
	gy sources, their conservation and storage systems.		
UNITS	COURSE DETAILS		
	<b>INTRODUCTION TO ENERGY SOURCES:</b> energy consumption		
UNIT-I	as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-		
	conventional and renewable energy sources – comparison – merits and demerits.		
	SOLAR ENERGY: solar energy Introduction – solar constant –		
	solar radiation at the Earth's surface – solar radiation geometry –		
UNIT-II	Solar radiation measurements – solar radiation data –solar energy		
	storage and storage systems – solar pond – solar cooker – solar water		
	heater – solar greenhouse – types of greenhouses – solar cells.		
	WIND ENERGY: introduction –nature of the wind – basic principle		
	of wind energy conversion – wind energy data and energy estimation		
UNIT-III	– basic components of Wind Energy Conversion Systems (WECS) –		
	advantages and disadvantages of WECS – applications – tidal energy		
	<b>BIOMASS ENERGY:</b> introduction – classification – biomass		
	conversion technologies – photosynthesis – fermentation - biogas		
UNIT-IV	generation –classification of biogas plants – anaerobic digestion for		
	biogas – wood gasification – advantages and disadvantages.		
	ENERGY STORAGE: importance of energy storage- batteries -		
	lead acid battery -nickel-cadmium battery – fuel cells – types of fuel		
UNIT-V	cells – advantages and disadvantages of fuel cells – applications of		
	fuel cells - hydrogen storage.		
	1. G.D.Rai, Non-Conventional Sources of Energy, Khanna		
	Publishers, 2009, 4 th Edn.		
TEXT BOOKS	2. S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal		
IEAI DUUKS	Collection and Storage, McGraw Hill, 2008, 3 rd Edn.		
	3. D P Kothari, K P Singal, RakeshRajan, PHI Learning Pvt Ltd,		
	2011, 2 nd Edn.		
	1. John Twidelland Tony Weir, Renewable Energy Resources,		
	Taylor and Francis, 2005, 2 nd Edn.		
	2. S.A. Abbasi and Nasema Abbasi, Renewable Energy sources and		
REFERENCE	their environmental impact, PHI Learning Pvt. Ltd, 2008.		
BOOKS	3. M. P. Agarwal, Solar Energy, S. Chand and Co. Ltd., New		
	Delhi,1982		
	4. H. C. Jain, Non-Conventional Sources of Energy, Sterling		
	Publishers, 1986.		

<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
25	75	100	

	MATHEMATICAL PHYSICS
Learning Objectiv	ve: To understand higher mathematical concepts which are applied to
solve problems in I	Physics and similar situations
UNITS	COURSE DETAILS
UNIT-I	<b>MATRICES:</b> types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley-Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.
UNIT-II	<b>VECTOR CALCULUS:</b> vector differentiation – directional derivatives –definitions and Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.
UNIT-III	<b>ORTHOGONAL CURVILINEAR COORDINATES:</b> tangent basis vectors – scale factors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar –divergence and curl of a vector – Laplacian in these coordinate systems.
UNIT-IV	<ul> <li>FOURIER SERIES: periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms.</li> <li>FOURIER TRANSFORMS: Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier transform of single pulse – trigonometric, exponential and Gaussianfunctions – inverse Fourier transform – convolution theorem.</li> </ul>
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.
TEXT BOOKS	<ol> <li>Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.</li> <li>Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers.</li> <li>Mathematical Physics – B. D. Gupta.</li> <li>Mathematical Physics – H. K. Das, S. Chand and Co, New Delhi.</li> </ol>
REFERENCE BOOKS	<ol> <li>Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.</li> <li>Engineering Mathematics III- B, M. K. Venkataraman,</li> <li>Applied Mathematics for Scientists and Engineers, Bruce R. Kusseand Erik A. Westwig, 2nd Ed, WILEY-VCH Verlag, 2006.</li> <li>Vector space and Matrices – J. C. Jain, Narosa Publishing House Pvt. Ltd.</li> </ol>

Continuous Internal Assessment	<b>End Semester Examination</b>	Total	Grade
25	75	100	

	ADVANCED MATHEMATICAL PHYSICS		
Learning Objectiv	ve: The fundamentals of matrices and vector calculus learnt in earlier		
0	students to learn advanced topics and theorems. The special functions		
	partial differential equations will be of use in research at a later stage.		
UNITS	COURSE DETAILS		
	MATRICES: introduction – special types of matrices – transpose –		
	conjugate – conjugate transpose – symmetric and anti symmetric –		
UNIT-I	Hermitian and skew Hermitian – orthogonal and unitary – properties		
	- characteristic equation - roots and characteristic vectors -		
	diagonalization– Cayley–Hamilton theorem –simple problems		
	<b>VECTOR CALCULUS:</b> $\nabla$ operator – divergence – second derivative		
	of vector functions or fields – Laplacian operator – curl of a vector –		
UNIT-II	line integral – line Integral of a vector field around an infinitesimal		
	rectangle – curl of conservative field – surface integral – volume		
	integral (without problem) – Gauss's divergence theorem and proof –		
	Stroke's theorem and proof –simple problems.		
	SPECIAL FUNCTIONS: definition –Beta function – Gamma		
	function – evaluation of Beta function – other forms of Beta function		
UNIT-III	– evaluation of Gamma function – other forms of Gamma function –		
	relation between Beta and Gamma functions – simple problems.		
	<b>FROBENIUS METHOD AND SPECIAL FUNCTIONS:</b> singular points of second order linear differential equations and importance –		
	singularities of Bessels and Laguerre equations, Frobenius method		
UNIT-IV	and applications to differential equations: Legendre and Hermite		
	differential equations – Legendre and Hermite polynomials –		
	Rodrigues formula –generating function – orthogonality		
	PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial		
	differential equations using separation of variables - Laplace's		
	equation in problems of rectangular – cylindrical and spherical		
UNIT-V	symmetry – conducting and dielectric sphere in an external uniform		
	electric field – wave equation and its solution for vibrational modes		
	of a stretched string		
	1. Mathematical Physics, B.D. Gupta-Vikas Publishing House, 4 th		
<b>TEXT BOOKS</b>	Edition (2006)		
	2. Mathematical Physics, SatyaPrakash (Sultan Chand)		
	1. Mathematical Methods for Physicists, G.B.Arfken, H.J.Weber,		
	F.E.Harris (2013, 7th Edn., Elsevier)		
	2. Mathematical Physics–H. K. Dass, Dr. Rama Verma (S. Chand		
REFERENCE	Publishing)		
BOOKS	3. Advanced Engineering Mathematics, Erwin Kreyszig (Wiley		
	India)		
	4. Mathematical Physics and Special Relativity, M. Das, P.K. Jena		
	and B.K. Dash (Srikrishna Prakashan)		

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Ν	UMERICAL METHODS AND C PROGRAMMING
Learning Object	ctive: To understand the methods in numerical differentiation and
integration and to	o develop the problem solving skills of the student. To introduce and
explain the basic	structure, rules of compiling and execution of C programming.
UNITS	COURSE DETAILS
	<b>NUMERICAL SOLUTIONS:</b> determination of zeros of polynomials
LINUT I	– roots of linear and nonlinear algebraic and transcendental equations –
UNIT-I	bisection and Newton-Raphson methods - convergence and divergence
	of solutions
	NUMERICAL DIFFERENTIATION, INTEGRATION AND
	CURVE FITTING: Newton's forward and backward interpolation –
UNIT-II	Lagrange's interpolation – Newton-Raphson method to find square
	root and cube roots – principle of least squares – fitting a straight line
	and exponential curve – trapezoidal rule – Simpson's 1/3 and 1/8 rule
	ALGORITHM, FLOW CHART AND PROGRAM: development
	of algorithm – flow chart for solving simple problems– average of set
UNIT-III	of numbers – greatest, smallest – conversion of Fahrenheit to Celsius
0111-111	and Celsius to Kelvin, miles to kilometer – sorting set of numbers in
	ascending and descending order – square matrix, addition, subtraction
	and multiplication of order (2x2) using arrays.
	<b>INTRODUCTION TO C:</b> importance of C – basic structure of C
	programming – constants, variables and data types – character set, key
UNIT-IV	words and identifiers – declaration of variables and data types –
	operators – expressions: arithmetic, relational, logical, assignment –
	increment and decrement – conditional – comma operators
	<b>CONTROL STRUCTURE:</b> decision making with if, if-else, nested if
UNIT-V	- switch -go to - break - continue -while, do while, for statements -
	arrays, one dimensional and two dimensional – declaring arrays –
	storing arrays in memory –initializing arrays – simple programs
	1. Numerical methods, Singaravelu, Meenakshipublication,4 th Edn.,
	1999.
	2. Numerical methods P.Kandasamy, K.Thilagavathy, K. Gunavathi,
TEVT DOOLO	S.Chand, 2016
TEXT BOOKS	3. Programming in C, Balagurusamy, TMG, ND, 2012
	4. Numerical Analysis, M.K. Venkatraman, NPH, 2013
	5. Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi,
	2013
	1. Schaum's outline series, Theory and Problems of programming in
REFERENCE	C, C.Byronand S. Gottfried, Tata McGraw Hill 2003
BOOKS	3. Numerical methods and C Programming, Veerarajan, 2015.
	5. Trumenear methods and C i togramming, Vectorajan, 2015.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

MATERIALS SCIENCE			
Learning Objec	tive: To learn imperfections in crystals, deformation of materials and		
	lls. To get knowledge on behavior of a material, under the action of light		
and their applicat	ions. To know the applications of crystal defects.		
UNITS	COURSE DETAILS		
	<b>CRYSTAL IMPERFECTIONS:</b> introduction – point defects:		
	vacancies(problems), interstitials, impurities, electronic defects -		
	equilibrium concentration of point imperfections (problems)-		
UNIT-I	application of point defects -line defects: edge dislocation(problems),		
	screw dislocation - surface defects: extrinsic defects - intrinsic		
	defects: grain boundaries, tilt andtwist boundaries, twin boundaries,		
	stacking faults – volume defects – effect of imperfections.		
	MATERIAL DEFORMATION: introduction – elastic behavior of		
	materials – atomic model of elastic behavior –modulus as a parameter		
UNIT-II	in design - rubber like elasticity - inelastic behavior of materials -		
	relaxation process - viscoelastic behavior of materials - spring-Dash		
	pot models of viscoelastic behavior of materials.		
	PERMANENT DEFORMATION AND STRENGTHENING		
	<b>METHODS OF MATERIALS:</b> introduction –plastic deformation:		
UNIT-III	tensile stress-strain curve – plastic deformation by slip – creep:		
	mechanism of creep - creep resistant materials - strengthening		
	methods: strain hardening, grain refinement - solid solution		
	strengthening – precipitation strengthening.		
	<b>OPTICAL MATERIALS:</b> introduction – optical absorption in		
UNIT-IV	metals, semiconductors and insulators - NLO materials and their		
	applications – display devices and display materials: fluorescence and		
	phosphorescence – light emitting diodes –liquid crystal displays.		
	MECHANICAL TESTING: destructive testing: tensile		
UNIT-V	test, compression test, hardness test – nondestructive testing (NDT):		
	radiographic methods, ultrasonic methods – thermal methods of NDT:		
	thermography – equipment used for NDT: metallurgical microscope		
TEVT DOOLO	1. Material science and Engineering, Raghavan V, Prentice Hall of		
TEXT BOOKS	India, Sixth Edition, 2015		
	2. Materials science, V. Rajendran, McGraw Hill publications 2011		
	1. William D. Callister, Jr., Material Science and Engineering – An		
	Introduction, 8th Edition, John Wiley and Sons, Inc., 2007		
	2. W. Bolton, "Engineering materials technology", 3rd Edition,		
REFERENCE	Butterworth and Heinemann, 2001.		
BOOKS	3. Donald R. Askeland, Pradeep P. Phule, "The Science and Engineering		
	of Materials", 5th Edition, Thomson Learning, First Indian Reprint,		
	8. William F. Smith, "Structure and Properties of Engineering Alloys",		
	Mc-Graw-Hill Inc., U.S.A, 2nd edition, 1993.		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

LASERS AND FIBER OPTICS			
Learning Objec	tive: The students will learn the fundamentals, types of lasers, laser		
	nd their applications also the inter connect between optics with lasers.		
UNITS	COURSE DETAILS		
UNIT-I	<b>FUNDAMENTALS OF LASER:</b> basic principles: spontaneous and stimulated emission – Einstein's coefficient – pumping mechanism: optical, electrical and laser pumping – population inversion – two and three level laser system – resonator configuration – quality factor – threshold condition – concept of Qswitching – Theory of model ocking – cavity dumping.		
UNIT-II	<b>TYPES OF LASER: s</b> olid state laser: ruby laser, Nd:YAGlaser, Nd:Glasslaser– semiconductor laser: intrinsic semiconductor laser, doped semiconductorlaser, injection laser – dye laser – chemical laser: HCL laser, DF- CO ₂ , CO chemical laser. Gaslaser:neutral atom gas laser (He-Ne laser), CO ₂ laser, Copper vapour laser.		
UNIT-III	APPLICATIONS OF LASER: application of laser in metrology – optical communication – materialprocessing: laser instrumentation of material processing, powder feeder, laser heating, laser welding, laser melting – medical application – Laserinstrumentationforsurgeries– laserinastronomy		
UNIT-IV	<b>FIBEROPTICS:</b> basic components of optical fiber communication – principles of lightpropagation through fiber – total internal reflection – optical fiber – coherent bundle – numerical aperture and skew mode – phase shift and attenuation during total internal reflection – types of fiber: single mode and multi-mode fiber – step index and graded index fiber – fiber optic sensors – applicationoffiberoptics.		
UNIT-V	CHARACTERISTICS AND FABRICATION OF OPTICALFIBER: fiber characteristics: mechanical and transmission characteristics – absorption loss and scattering loss measurements – dispersion – connectors and splicers – fiber termination – optical time domain reflectometer(OTDR) and its uses – fiber material – fiber fabrication – fiber optic cables design.		
TEXT BOOKS	<ol> <li>B.B. Laud - Laser and Non-linear Optics, New Age International Publications Third Edition, New Delhi.</li> <li>An Introduction to laser, theory and applications by Avadhunulu, M.N.S., Chand and Co, New Delhi</li> <li>J. Wilson and J.F.B. Hawkes. 'Introduction to Opto Electronics', Pearson Education, 2018.</li> </ol>		
REFERENCE BOOKS	<ol> <li>A.Sennaroglu, "PhotonicsandLaserEngineering:Principles,Devicesand Applications" McGraw-HillEducation,2010.</li> <li>K.R.Nambiar, "Lasers: Principles, Types and Applications", New Age International, 2004.</li> <li>Optic, AjoyGhatak, McGraw-Hill Education (India) Pvt, Ltd, 6th Edn., 2017.</li> </ol>		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

DIGITAL PHOTOGRAPHY		
Learning Object	ive: To understand the principles of photography and image formation	
	nd arts behind it. To understand the essential components of	
	digital cameras and also the different image processing techniques.	
UNITS	COURSE DETAILS	
UNIT-I	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE FORMATION: principle –chemical route and digital route –light, wavelengths, colours – shadows – light intensity and distance – making light form images –pin-hole images – practical limitations to pin-hole images – lens instead of pin-hole – focal length and image	
UNIT-II	size – imaging of closer subjects. <b>LENSES – CONTROLLING THE IMAGES:</b> photographic lens – focal length and angle of view ( <i>problems</i> ) – focusing movement – aperture and f-numbers ( <i>problems</i> ) – depth of field– depth of focus – image stabilization – lenses for digital cameras – lens and camera care	
UNIT-III	CAMERA USING FILMS AND ITS TYPES: camera and its essential components- shutter – aperture – light measurement – film housing – camera types: view camera- view finder camera – Reflex camera- single lens reflex (SLR) camera	
UNIT-IV	<b>DIGITAL CAMERAS PRINCIPLE AND TYPES:</b> principle of digital image capturing –comparison of digital and analog picture information – megapixel – grain, noise and pixel density – optical and digital zooming – image stabilizer – bit depth – white balance – colour modes – file formats (TIFF, RAW and JPEG) – storage cards and types – digital cameras: camera phones – compact camera – hybrid camera – digital SLR.	
UNIT-V	<b>THE DIGITAL IMAGE – POSTPRODUCTION:</b> hardware: computer and its peripherals – software: saving digital file – basic editing: navigating the image – undo/redo/history – crop – rotate – brightness and contrast – colour balance – hue/saturation – dodge/burn – cloning and retouching – removing an element in an image – advanced editing: histogram/levels – curves – selection tools: magic wand – printing digital images: inkjet printer – laser printer – dye sub printer – lambda/light jet printers.	
TEXT BOOKS	<ol> <li>Michel J.Langford , Anna Fox and Richard Sawdon Smith, Basic photography, 9th Edition, 2010-NL, Focal press, London</li> <li>Henry Carroll, Read this if you want to take great photographs of people, Laurence King Publishing</li> </ol>	
REFERENCE BOOKS	<ol> <li>Mark Galer, Digital Photography in Available Light essential skills, 2006, Focal press, London</li> <li>Paul Harcourt Davies, The Photographer's practical handbook, 2005, UK PRESS</li> </ol>	

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

NANOSCIENCE AND NANO TECHNOLOGY			
Learning Object	Learning Objective: This course aims to provide an overall understanding of		
0	Nanotechnology and introduces different types of nanomaterials, their		
	tion methods, characterization techniques and a range of applications.		
UNITS	COURSE DETAILS		
	NANOSCIENCE AND NANOTECHNOLOGY: nanoscale- nature		
	and nanostructures – nanostructures: 0D, 1D,2D– surface to volume		
UNIT-I	ratio- size effect - excitons - quantum confinement- metal based		
	nanoparticles (metal and metal oxide) – nanocomposites (non-polymer		
	based) – carbon nanostructures – fullerene –SWCNT and MWCNT		
	<b>PROPERTIES OF NANOMATERIALS:</b> introduction –mechanical		
	behavior -elastic properties - hardness and strength - ductility and		
UNIT-II	toughness -superplastic behavior - optical properties - surface		
UN11-11	plasmon resonance - electrical properties - dielectric materials and		
	properties – magnetic properties – super paramagnetism –		
	electrochemical properties – properties of CNTs.		
	FABRICATION METHODS AND VACUUM TECHNIQUES:		
	top-down and bottom-up approaches - electrochemical method -		
UNIT-III	chemical and physical vapour depositions (CVD and PVD) - plasma		
	arc discharge - sputtering - thermal evaporation - pulsed laser		
	deposition - ball milling - lithography: photolithography - e-beam		
	lithography – sol-gel methods – synthesis of CNT.		
	CHARACTERIZATION TECHNIQUES: scanning probe		
	microscopy – scanning tunneling microscopy – atomic force		
UNIT-IV	microscopy - scanning electron microscopy - transmission electron		
	microscopy -powder XRD method: determination of structure and		
	grain size analysis – UV-visible and photoluminescence spectroscopy.		
	APPLICATIONS OF NANOMATERIALS: medicine: drug delivery		
	- photodynamic therapy - molecular motors -energy: fuel cells -		
UNIT-V	rechargeable batteries – supercapacitors– photovoltaics. sensors:		
	nanosensors based on optical and physical properties – electrochemical		
	sensors – nanobiosensors. nanoelectronics: CNTFET – display screens		
	- GMR read/write heads - nanorobots - applications of CNTs		
	1. K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd.,		
TEXT BOOKS	<ol> <li>M.A. Shah, Tokeer Ahmad (2010), <u>Principles of Nanoscience and</u></li> </ol>		
ILAI DOOKS	Nanotechnology, Narosa Publishing House Pvt Ltd.		
	<ol> <li>Mick Wilson, et al (2005) <u>Nanotechnology</u>, Overseas Press.</li> </ol>		
	1. Richard Booker and Earl Boysen, (2005) <u>Nanotechnology</u> , Wiley		
	Publishing Inc. USA		
REFERENCE	2. J.H.Fendler (2007) Nano particles and nano structured films;		
BOOKS	Preparation, Characterization and Applications, John Wiley and Sons		
	3. B.S.Murty, et al (2012) Textbook of Nanoscience and		
	Nanotechnology, Universities Press.		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

	MEDICAL INSTRUMENTATION		
Learning Object	ive: This course aims to provide background of the Physics principles		
inmedical instrum	inmedical instrumentation technologies through theoretical and practical learning.		
UNITS	COURSE DETAILS		
	BIOMETRICS: introduction to man-instrument system and its		
	components - problems encountered in measuring living systems -		
UNIT-I	transducers- force, motion, pressure transducers.		
0111-1	AUDIOMETRY: mechanism of hearing – air and bone conduction –		
	threshold of hearing – audiometer – masking in audiometry – pure tone		
	and speech audiometer – evoked response audiometry – hearing aids		
	BIOELECTRIC POTENTIALS AND ELECTRODES: biomedical		
	signals – sources of bioelectric potentials – resting, action and		
	propagation of bioelectric potentials -bio-potential electrodes - skin		
UNIT-II	surface, needle electrodes.		
	<b>BIOMEDICAL RECORDERS:</b> electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle – electro		
	encephalogram (EEG) – brain waves – EEG instrumentation – recording		
	of evoked potentials – electro myogram (EMG)–pulse oximeter.		
	<b>DIAGNOSTIC RADIOLOGY:</b> radiography – primary radiological		
	image – contrast agents, filters – beam restrictor, grid – image quality		
	<b>COMPUTED TOMOGRAPHY:</b> linear tomography – computed		
	tomography – helical and multi slice – image quality – radiation dose.		
UNIT-III	RADIOISOTOPES AND NUCLEAR MEDICINE: radioisotopes -		
	radiopharmaceuticals – technetium generator – gamma camera – positron		
	emission tomography – disposal of radioactive waste.		
	ULTRASOUND IMAGING: ultrasound transducer – ultrasound		
	imaging– Doppler ultrasound – ultrasound image quality and bio-effects.		
UNIT-IV	MAGNETIC RESONANCE IMAGING:proton and external magnetic		
	field – precession – radiofrequency and resonance – MRI signal –		
	relaxation time – MRI instrumentation – imaging sequences – biosafety		
	<b>PROJECT ASSIGNMENT:</b> clinical practice of <i>one</i> of the following:		
UNIT-V	electro cardiogram, electro encephalogram, electro myogram, electro		
	oculogram, computed tomography, positron emission tomography, ultrasound		
	1. Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) Biomedical		
	Instrumentation and Measurements Prentice Hall of India, New Delhi.		
	2. R. S. Khandpur (2003) Handbook of Biomedical Instrumentation		
TEXT BOOKS	2 nd Edn. Tata McGraw Hill, New Delhi.		
	3. Kuppusamy Thayalan (2017), Basic Radiological Physics 2 nd Edn.		
	Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.		
	1. John Webster (2004) Bioinstrumentation John Wiley and Sons,		
	Singapore.		
REFERENCE BOOKS	2. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction		
	to Biomedical Engineering, 2 nd ed. Elsevier, San Deigo		
	3. William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation		
	therapy Physics 3 rd ed. Wiley-Liss, New Jersey		

<b>Continuous Internal Assessment</b>	<b>End Semester Examination</b>	Total	Grade
25	75	100	

# LIST OF NON MAJOR ELECTIVES (NME)

	PHYSICS FOR EVERYDAY LIFE	
Learning Objective: To know where all physics principles have been put to use in daily		
life and appreciate the concepts with a better understanding also to know about Indian		
scientists who have	ye made significant contributions to Physics	
UNITS	COURSE DETAILS	
UNIT-I MECHANICAL OBJECTS: spring scales – bouncing ba		
0111-1	coasters – bicycles –rockets and space travel.	
	<b>OPTICAL INSTRUMENTS AND LASER:</b> vision corrective lenses	
UNIT-II	– polaroid glasses – UV protective glass – polaroid camera – colour	
	photography – holography and laser.	
	<b>PHYSICS OF HOME APPLIANCES:</b> bulb – fan – hair drier –	
UNIT-III	television – air conditioners – microwave ovens – vacuum cleaners	
	<b>SOLAR ENERGY:</b> Solar constant – General applications of solar	
UNIT-IV	energy – Solar water heaters – Solar Photo – voltaic cells – General	
	applications of solar cells.	
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS:	
UNIT-V	C.V.Raman, Homi Jehangir Bhabha, Vikram Sarabhai,	
0111-1	Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ	
	Abdul Kalam and their contribution to science and technology.	
	1. The Physics in our Daily Lives, UmmeAmmara,	
TEXT BOOKS	GugucoolPublishing, Hyderabad, 2019.	
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.	

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

ASTROPHYSICS			
Learning Objective: This course intends to introduce principles of astrophysics			
describing the sci	describing the science of formation and evolution of stars and interpretation of various		
heavenly phenomena and provide an understanding of the physical nature of celestial			
bodies along with	the instrumentation and techniques used in astronomical research		
UNITS	COURSE DETAILS		
	<b>TELESCOPES:</b> Optical telescopes – magnifying power, brightness,		
UNIT-I	resolving power and f/a ratio - types of reflecting and refracting		
UNII-I	telescopes - detectors and image processing - radio telescopes -		
	Hubble space telescope.		
	SOLAR SYSTEM: Bode's law of planetary distances – meteors,		
UNIT-II	meteorites, comets, asteroids - Kuiper belt - Oort cloud - detection of		
	gravitational waves – recent advances in astrophysics.		
	<b>ECLIPSES:</b> types of eclipses – solar eclipse – total and partial solar		
	eclipse – lunar eclipse – total and partial lunar eclipse – transits.		
<b>THE SUN:</b> physical and orbital data – solar atmosphere – photospher			
UNIT-III – chromosphere – solar corona – prominences – sunspots – 1			
	solar cycle – solar flares.		

UNIT-IV	<b>STELLAR EVOLUTION:</b> H-R diagram – birth and death of low mass, intermediate mass and massive stars – Chandrasekar limit – white dwarfs – neutron stars – pulsars – black holes – supernovae. <b>GALAXIES:</b> classification of galaxies – galaxy clusters – interactions of galaxies, dark matter and super clusters – evolving universe.	
UNIT-V	<ul> <li>ACTIVITIES IN ASTROPHYSICS:</li> <li>(i) Basic construction of telescope</li> <li>(ii) Develop models to demonstrate eclipses/planetary motion</li> <li>(iii) Night sky observation</li> <li>(iv) Conduct case study pertaining to any topic in this paper</li> <li>(v) Visit to any one of the National Observatories Any three activities to be done compulsorily.</li> </ul>	
TEXT BOOKS	<ol> <li>BaidyanathBasu, (2001). <u>An introduction to Astrophysics</u>, Second printing, Prentice – Hall of India (P) Ltd, New Delhi</li> <li>K.S.Krishnaswamy, (2002), <u>Astrophysics – a modern perspective</u>, New Age International (P) Ltd, New Delhi.</li> <li>Shylaja, B.S. andMadhusudan, H.R.,(1999), <u>Eclipse: A Celestial Shadow Play</u>, Orient BlackSwan,</li> </ol>	

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

PHYSICS OF MEDICAL INSTRUMENTS			
0	Learning Objective: The students will be exposed to instruments like ECG, EEG, EMG,		
medical imaging, diagnostic specialties, operation theater and its safety which will kindle			
-	ize in instrument servicing.		
UNITS	COURSE DETAILS		
	<b>BIO-POTENTIALS AND ELECTRODES:</b> transport of ions through		
	cell membrane- resting and action potential - Characteristics of resting		
UNIT-I	potential - bio-electric potential - design of medical instruments -		
0111-1	components of bio-medical instrumentation – electrodes – electrode		
	potential – metal microelectrode – depth and needle electrodes – types		
	of surface electrode – the pH electrode.		
	<b>Bio-potential based Instrumentation:</b> Electrocardiography (ECG)		
	origin of cardiac action potential - ECG lead configuration -block		
UNIT-II	diagram of ECG recording set up (qualitative) –		
0111-11	Electroencephalography (EEG) - origin of EEG - action and evoked		
	potentials - brain waves - block diagram of modern EEG set up -		
	electromyography (EMG) – block diagram of EMG recording setup.		
	<b>OPERATION THEATRE AND SAFETY:</b> diathermy – block		
	diagram of the electrosurgical diathermy- shortwave, microwave,		
UNIT-III ultrasonic diathermy – ventilators – servo controlled system			
	RADIATION SAFETY: units of radiation - pocket dosimeter -		
	pocket type radiation alarm – thermo-luminescence dosimeter.		

UNIT-IV	<b>MEDICAL IMAGING:</b> nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.
UNIT-V	<b>DIAGNOSTICS AND SPECIALITIES:</b> X-rays in radiography – fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination ( <i>problems</i> ). <b>LASER IN MEDICINE:</b> laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with their operation (qualitative).
TEXT BOOKS	<ol> <li>Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015</li> <li>Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992</li> <li>Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987</li> <li>Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985</li> <li>Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015</li> </ol>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

HOME ELECTRICAL INSTALLATION			
Learning Object	Learning Objective: The students will get knowledge on electrical instruments,		
installations and domestic wiring techniques with safety precautions and servicing.			
UNITS	UNITS COURSE DETAILS		
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature		
UNIT-II	<b>TRANSMISSION OF ELECTRICITY:</b> production and transmissionof electricity – concept of power grid – Series and parallel connections– technicalities of junctions and loops in circuits –transmission losses(qualitative) – roles of step-up and step-down transformers – quality ofconnecting wires – characteristics of single and multicore wires		
UNIT-III	<b>ELECTRICAL WIRING:</b> different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs		
UNIT-IV	<b>POWER RATING AND POWER DELIVERED:</b> conversion of electrical energy in to different forms – work done by electrical energy		

	<ul> <li>power rating of electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating</li> <li>useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit</li> </ul>
UNIT-V	<b>SAFETY MEASURES:</b> insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers – types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth line – lighting arrestors – short circuiting and over loading – electrical safety – tips to avoid electrical shock – first aid for electrical shock – fire safety for electric current
TEXT BOOKS	<ol> <li>Wiring a House: 5th Edition by Rex Cauldwell, (2014).</li> <li>Black and Decker Advanced Home Wiring, 5th Edition: Backup Power - Panel Upgrades - AFCI Protection - "Smart" Thermostats, by Editors of Cool Springs Press, (2018).</li> <li>Complete Beginners Guide to Rough in Electrical Wiring: by Kevin Ryan (2022).</li> </ol>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

PHYSICS OF MUSIC						
Learning Object	ive: To apprise and train students on the role of Physics in music and get					
the knowledge on	the musical notes and instruments.					
UNITS	COURSE DETAILS					
UNIT-I	<b>SCIENTIFIC STUDY OF MUSIC:</b> vibrations of atoms of matter– vibrations coupling to air – propagation of sound waves in air, other media, fluids and solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human and animal sound perception– mechanism of ear and hearing – psychoacoustics					
UNIT-II	<b>SIMPLE VIBRATING SYSTEMS:</b> simple harmonic motion tuning fork— amplitude, phase, energy, energy loss/damping dissipation – power – travelling waves and standing waves– laws of					
UNIT-III	<b>MUSICAL TONE:</b> pure/simple tones – sine/cosine waves– well- defined frequencies, wavelengths, amplitudes and phases– partial tones – assembly of pure tones– mix of different frequencies and amplitudes– complex tone – superposition of simple tones – complex waveform– periodic complex waveform – formants – resonances– sound envelope					
UNIT-IV	<b>PRODUCTION OF MUSICAL SOUNDS:</b> human voice, mechanism of vocal sound production – larynx (sound box) – <i>stringed Instruments</i> : plucked and bowed, guitar, mandolin, violin, piano, etc. – <i>wind instruments</i> : whistles, flute, saxophone, pipe organ, bagpipes,					

	etc- <i>percussion instruments</i> : plates, membranes, drums, cymbals, xylophone etc. – <i>electronic instruments</i> : keyboards, electric guitars, rhythm pads, etc. – analog and digital sound synthesizers,-MIDI instrument- computer generated music
UNIT-V	<b>RECORDING OF MUSIC and SOUND:</b> Edison phonograph – cylinder and disk records – magnetic wire and tape recorders – digital recording (e.g. to CD, DVD, etc.)– analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields – near and far fields of acoustic– spectral analysis techniques – continuous and discrete Fourier transforms, digital signal processing – digital filtering – specifications of recording studios
TEXT BOOKS	<ol> <li>Physics and Music: The Science of Musical Sound by Harvey White (2014)</li> <li>Good Vibrations – The Physics of Music by Barry Parker, (2009)</li> <li>The History of Musical Instruments by Curt Sachs, (2006)</li> <li>Physics and Music: Essential Connections and Illuminating Excursions by Kinko Tsuji and Stefan C. Müller (2021)</li> </ol>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE OBJECTIVES	To impart basicprinciples of Physics that which would be helpful for students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
UNIT-I	WAVES, OSCILLATIONS AND ULTRASONICS: simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography –ultrasonoimaging- ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.
UNIT-II	<b>PROPERTIES OF MATTER:</b> <i>Elasticity</i> : elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum <i>Viscosity</i> : streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, <i>Surface tension</i> : definition – molecular theory – droplets formation– shape, size and lifetime – COVID transmission through droplets, saliva – drop weight method – interfacial surface tension.
UNIT-III	<b>HEAT AND THERMODYNAMICS:</b> Joule-Kelvin effect – Joule- Thomson porous plug experiment – theory – temperature of inversion – liquefaction of Oxygen– Linde's process of liquefaction of air– liquid Oxygen for medical purpose– importance of cryocoolers– thermodynamic system – thermodynamic equilibrium – laws of thermodynamics – heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.
UNIT-IV	<b>ELECTRICITY AND MAGNETISM:</b> potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories– Smart wifi switches-fuses and circuit breakers in houses
UNIT-V	<b>DIGITAL ELECTRONICS AND DIGITAL INDIA:</b> logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to Digital India

	PROFESSIONAL COMPONENTS:expert lectures -seminars					
UNIT-VI	webinars – industry inputs – social accountability – patriotism					
	1. R.Murugesan (2001), Allied Physics, S. Chand and					
	Co,NewDelhi.					
	2. Brijlal and N.Subramanyam (1994), Waves and Oscillations,					
	Vikas Publishing House, NewDelhi.					
	3. Brijlal and N.Subramaniam (1994), Properties of Matter,					
<b>TEXT BOOKS</b>	S.Chand andCo.,NewDelhi.					
	4. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics					
	(8 th edition), S.Chand andCo.,New Delhi.					
	5. R.Murugesan(2005), Optics and Spectroscopy, S.Chand and					
	Co,NewDelhi.					
	6. A.Subramaniyam, Applied Electronics 2 nd Edn.,National					
	Publishing Co., Chennai.1. Resnick Halliday and Walker(2018). Fundamentals of Physics					
	1. Resnick Halliday and Walker(2018). Fundamentals of Physics (11 th edition), John Willey and Sons, Asia Pvt.Ltd., Singapore.					
	<ol> <li>V.R.Khannaand R.S.Bedi (1998), Text book of Sound1stEdn. Kedharnaath Publishand Co, Meerut.</li> </ol>					
REFERENCE	3. N.S.Khare and S.S.Srivastava (1983), Electricity and					
BOOKS	Magnetism10 th Edn.,Atma Ram and Sons, New Delhi.					
DOOKS	4. D.R.KhannaandH.R. Gulati(1979). Optics, S. Chand and					
	Co.Ltd., New Delhi.					
	5. V.K.Metha (2004). Principles of electronics 6 th Edn. S.Chand					
	and company.					
	1. https://youtu.be/M_5KYncYNyc					
	2. https://youtu.be/ljJLJgIvaHY					
	3. https://youtu.be/7mGqd9HQ_AU					
	4. https://youtu.be/h5jOAw57OXM					
	5. https://learningtechnologyofficial.com/category/fluid-					
WEB	mechanics-lab/					
RESOURCES	6. http://hyperphysics.phy-					
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watc					
	h?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v=9mX					
	OMzUruMQandt=1shttps://www.youtube.com/watch?v=m4u-					
	SuaSu1sandt=3shttps://www.biolinscientific.com/blog/what-are-					
	surfactants-and-how-do-they-work					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.
	CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situations in laboratory and real life. Connect droplet theory with Corona transmission.
COURSEO UTCOMES	CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the background of growth of this technology.
	CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlate the connection between electric field and magnetic field and analyze them mathematically verify circuits and apply the concepts to construct circuits and study them.
	CO5	Interpret the real life solutions using AND, OR, NOT basic logic gates and intend their ideas to universal building blocks. Infer operation using Boolean algebra and acquire elementary ideas of IC circuits. Acquire information about various Govt. programs/ institutions in this field.

#### MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
<b>CO4</b>	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	ODD SEMESTER - CORE					
COURSETITLE	ALLIED PRACTICAL-I					
CREDITS	2					
COURSE	Apply various physics concepts to understand Properties of Matter					
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and					
	analyse, able to do error analysis and correlate results					
	Experiments from the list:					
1. Young's modu	lus by non-uniform bending using pin and microscope					
2. Young's modu	lus by non-uniform bending using optic lever, scale and telescope					
3. Rigidity modu	lus by static torsion method.					
4. Rigidity modul	lus by torsional oscillations without mass					
6. Surface tension						
7. Comparison of viscosities of two liquids – burette method						
8. Specific heat capacity of a liquid – half time correction						
9. Verification of laws of transverse vibrations using sonometer						
10. Calibration of low range voltmeter using potentiometer						
11. Determination	of thermo emf using potentiometer					
12. Verification of	truth tables of basic logic gates using ICs					
13. Verification of	De Morgan's theorems using logic gate ICs.					
14. Use of NAND	as universal building block.					
15. Any other prac	ticals					
Note : Use of digita	al balance permitted					
/FTHOD OF FVAI						

<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantum physics, semiconductor physics, and electronics.

UNITS	COURSE DETAILS
UNIT-I	<b>OPTICS:</b> interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries
UNIT-II	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS:nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods –introduction to DAE, IAEA – nuclear fusion – thermonuclear reactions – differences between fission and fusion.
UNIT-IV	<b>INTRODUCTION TO RELATIVITY AND GRAVITATIONAL</b> <b>WAVES</b> : frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence –introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences
UNIT-V	<b>SEMICONDUCTOR PHYSICS:</b> p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations

	<b>PROFESSIONAL COMPONENTS:</b> expert lectures –seminars –
UNIT-VI	– webinars – industry inputs – social accountability – patriotism
	1. R.Murugesan (2005), Allied Physics, S.Chand and
	Co,NewDelhi.
	2. K.Thangaraj and D.Jayaraman (2004), Allied Physics, Popular
	BookDepot,Chennai.
TEXT BOOKS	3. Brijlal and N.Subramanyam (2002), Text book of Optics,
	S.Chand and Co,NewDelhi.
	4. R.Murugesan (2005), Modern Physics, S.Chand and Co,New
	Delhi.
	5. A.Subramaniyam Applied Electronics, 2 nd Edn.,National
	PublishingCo.,Chennai.
	1. Resnick Halliday and Walker (2018), Fundamentals of
	Physics, 11 th Edn., John WilleyandSons, Asia Pvt.Ltd.,
	Singapore.
	2. D.R.Khanna and H.R. Gulati (1979).Optics, S.Chand and
REFERENCE	Co.Ltd.,New Delhi.
BOOKS	3. A.Beiser (1997), Concepts of Modern Physics, Tata McGraw
DOOKS	Hill Publication, NewDelhi.
	4. Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn.,
	Universal Book Stall, NewDelhi.
	5. V.K.Metha(2004), Principles of electronics, 6 th Edn. ,S.Chand
	and Company, New Delhi.
	1. <u>https://www.berkshire.com/learning-center/delta-p-</u>
	facemask/https://www.youtube.com/watch?v=QrhxU47gtj4htt
	ps://www.youtube.com/watch?time_continue=318andv=D38Bj
	gUdL5Uandfeature=emb_logo
WEB	2. <u>https://www.youtube.com/watch?v=JrRrp5F-Qu4</u>
RESOURCES	3. <u>https://www.validyne.com/blog/leak-test-using-pressure-</u>
	transducers/
	4. <u>https://www.atoptics.co.uk/atoptics/blsky.htm</u> -
	5. <u>https://www.metoffice.gov.uk/weather/learn-</u>
	about/weather/optical-effects

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to:

	CO1	Explain the concepts of interference diffraction using principles of superposition of waves and rephrase the concept of polarization based on wave patterns	
	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance ofinterpretingimprovingtheoreticalmodelsbasedonobservation.A ppreciateinterdisciplinarynatureofscience and in solar energy related applications.	
COURSE OUTCOME S	CO3	Summarize the properties of nuclei, nuclear forces structure of atomic nucleus and nuclear models. Solve problems on delay rate half-life and mean-life. Interpret nuclear processes like fission and fusion. Understand the importance of nuclear energy, safety measures carried and get our Govt. agencies like DAE guiding the country in the nuclear field.	
	CO4	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.	
CO5 Summarize the working of semiconductor devices like junc diode, Zener diode, transistors and practical devices we dat use like USB chargers and EV charging stations.			

# MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER - CORE		
COURSETITLE	ALLIED PRACTICAL- II		
CREDITS	2		
	Apply various Physics concepts to understand concepts of Light,		
COURSE	electricity and magnetism and waves, set up experimentation to verify		
<b>OBJECTIVES</b>	theories, quantify and analyse, able to do error analysis and correlate		
	results		
Minimum of Ten	Experiments from the list:		
1. Radius of cur	rvature of lens by forming Newton's rings		
2. Thickness of	a wire using air wedge		
3. Wavelength of	of mercury lines using spectrometer and grating		
4. Refractive index of material of the lens by minimum deviation			
5. Refractive in	dex of liquid using liquid prism		
6. Determination of AC frequency using sonometer			
7. Specific resistance of a wire using PO box			
8. Thermal cond	ductivity of poor conductor using Lee's disc		
9. Determinatio	n of figure of merit table galvanometer		
10. Determinatio	n of Earth's magnetic field using field along the axis of a coil		
11. Characterisation of Zener diode			
12. Construction of Zerner/IC regulated power supply			
13. Construction of AND, OR, NOT gates using diodes and transistor			
14. NOR gate as	a universal building block		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

# LIST OF SKILL ENHANCEMENT COURSE (INCLUDES ENTREPRENEURIAL BASED)

Plotting Skills					
Learning Objective: To get a feel for the functions in various courses of the Physics					
through use of mobile apps.					
UNITS	COURSE DETAILS				
UNIT-I	Plotting Trigonometric functions				
UNIT-II	Plotting Polynomial and finding roots				
UNIT-III	Plotting Solutions of differential equations				
UNIT-IV	Plotting logarithmic and exponential functions				
UNIT-V	Plotting solutions of the Problems in Mechanics				
	1. Functions and their Graphs, Jackie Nicholas, Janet Hunter and				
	Jacqui Hargreaves, (1999) University of Sydney				
	2. Play with Graphs, Amit M. Aggarwal, Arihant Publishers, (2018)				
Reference	3. Introduction Mechanics for Engineers, Andy Ruina and Rudra				
Reference	Pratap, Preprint for Springer (2019)				
	4. Calculus, James Stewart, Thomson (2008) Sixth Edition				
	5. Help files of the apps.				

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Introduction to	Introduction to Python Programming				
Learning Object	ive: To understand a high level overview of programming and the tools				
needed to develop	android applications.				
UNITS	COURSE DETAILS				
UNIT-I	Installing Python – Program with variables - Library functions - Importingfrom modules and packages - plotting, printing and input data				
UNIT-II	ython interaction – variables, objects and Expressions, numerical rrays – Random numbers				
UNIT-III	For loop – while loop – branching; if, elesif and else				
UNIT-IV	Function writing - Programming as a step-wise strategy				
UNIT-V	List and tuples – exception handling – symbolic computation – making module – Apply to oscillating 1D system – simple model and numerical simulation				
TEXT BOOKS	<ol> <li>Programming for Computations – Python, Svein Linge and Hans Petter Langtangen, Spiringer Open (2020), Second Edition</li> <li>Introduction to Python Programming for Undergraduate Physics, Santu Chakraborty, New Academic Publishers (2020), First Edition</li> </ol>				

Continuous Inte	ernal Assessment	End Semester Examination	Total	Grade		
2	5	75	100			
Introduction to A	ndroid Mobile Ap	plication Development				
Learning Object	ive: To understand	a high level overview of programm	ming and	the tools		
needed to develop	android application	ns.				
UNITS	COURSE DETA	ILS				
	Introduction to Mobile Application Development (6L)					
		is program - Introduction to the co				
UNIT-I	-	day in the life of an Android deve	-			
		What is a mobile app? - Mobile a	pps at M	eta What		
		e there in Android development?				
	Android languag		· · / /	1.4		
UNIT-II		Android Studio: Take a Tour - P		-		
		- Anatomy of an Android App -	Module s	summary:		
	Emulation and D	obile Application Development				
		tor? - Android Virtual Device Ma	nnaar (	Inorating		
			-			
UNIT-III	System Images - Configuring an emulator - Project structure - Main activity – Gradle - Android manifest - Resource folder - Examination					
	of res folder - Examination of subfolders - Module summary:					
	Emulation and dev		ilouulo i	, anninar y .		
	Building the app	1				
UNIT-IV		thering - Project proposal - Start th	t the project - Setting			
		nding the assets - Required imports	1 5	U		
	Kotlin (6L)	^				
UNIT-V	Simple terms - Cr	reate the player - Module summary	: Buildin	g the app		
UNII-V	- Course recap	: Introduction to Android m	obile ap	plication		
	development					
		of Android App Development Janu	uary 2020	by Sujit		
	Kumar Mishra		2017 hr	Miles von		
<b>TEXT BOOKS</b>		App Development –28 November 2 Author), Adam Dennis (Author), F	•			
		erto Gonzalez (Author), Aravind Krish				
	· /·	sera.org/learn/introduction-to-android-	•	. ,		
	development	service fourth introduction to undrold-	income up	P ¹¹ vution ⁻		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Introduction to Web Development				
Learning Objective: To learn about basic knowledge and skill	s required for planning,			

	nd developing effective web pages			
UNITS	COURSE DETAILS			
UNIT-I	<b>Course Overview and Website Structure and Hosting (5L)</b> Introduction - What is a Web Hosting Company? - How to Find and Select a Web Hosting Company - Naming a Website - Website Name Registration - Networks and the Internet - First Look at a Website Control Panel - Web Development Tools			
UNIT-II	<b>Designing Your Own Website: HTML Basic (5L)</b> Introduction - Components and Structure of a Website - Creating Your Own HTML: Setting Up a Template - Creating Your Own HTML: Creating Links and Formatting Text - Creating Your Own HTML: Working with Images - Creating Your Own HTML: Working with Tables - Creating HTML - How to Practice - How to Put Your HTML on the Internet - How to Test Your HTML - Basic Styling in Webpages.			
	Introduction to Prog	ramming Using JavaScript (5L)		
UNIT-III	Introduction - Static vs. Dynamic Webpages - The Value of JavaScript to Our Websites - JavaScript Basics: Fundamental Syntax - Putting JavaScript to Work: Using Alerts and Prompts - Putting Javascript to Work: Events - Putting JavaScript to Work: Gathering Additional User Input and Dynamically Modifying HTML - Testing JavaScript			
UNIT-IV	Websites with Style: CSS Properties, Colors and Fonts (5L) Introduction - Plain Websites are Boring - CSS Basics - Putting CSS to Work: Getting Started with External CSS - Putting CSS to Work: Setting Colors with CSS - Putting CSS to Work: Controlling Your Page Layout - Putting CSS to Work: Common CSS Properties - How to Practice CSS -			
UNIT-V	Testing Website StylesCreating HTML Forms (5L)Introduction - HTML Forms User Input - HTML Form Elements - HTMLForm Validation: JavaScript - HTML Form Validation: Complex FormExample - HTML Form Validation: Additional Features - HTML FormValidation: Processing.Creating Web Applications (5L)Introduction - Client-side versus Server-side Application Development -Features in Web Applications: The While Loop - Features in WebApplications: The While Loop - Features in WebApplications: The for Loop - Creating New Features in Web Applications -Guided Practice with HTML Form Validation - Guided Practice withHTML Form Validation - Course Summary			
TEXT BOOKS1. Web Technologies, Black Book, 2018 by DT Editorial Services 2. A Complete Overview On: Web-development by Ayush Mauryavanshi (2021) 3. https://www.coursera.org/learn/web-development. 4. https://in.coursera.org/learn/introduction-to-android-mobile-application-development				
	EVALUATION:	End Somastor Eventingting	Tatal	Cuada
Continuous	Internal Assessment 25	End Semester Examination 75	Total 100	Grade
1	23	13	100	

LIST OF SKILL ENHANCEMENT COURSES (DISCIPLINE / SUBJECT SPECIFIC)

	PHYSICS WORKSHOP SKILL
Learning Object	ive: The aim of this course is to enable the students to familiar
and experience	with various
mechanical and	electrical tools through hands-on mode
UNITS	COURSE DETAILS
UNIT-I	<b>Introduction:</b> Measuring units. conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)
UNIT-II	<b>Mechanical Skill</b> : Concept of workshop practice. Overview of manufacturing methods: casting, foundry, machining, forming and welding. Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Cutting of a metal sheet using blade. Smoothening of cutting edge of sheet using file. Drilling of holes of different diameter in metal sheet and wooden block. Use of bench vice and tools for fitting. Make funnel using metal sheet. (10 Lectures)
	Introduction to Programming Using JavaScript (5L)
UNIT-III	Introduction - Static vs. Dynamic Webpages - The Value of JavaScript to Our Websites - JavaScript Basics: Fundamental Syntax - Putting JavaScript to Work: Using Alerts and Prompts - Putting JavaScript to Work: Events - Putting JavaScript to Work: Gathering Additional User Input and Dynamically Modifying HTML - Testing JavaScript
UNIT-IV	<b>Electrical and Electronic Skill</b> : Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit, Electronic switch using transistor and relay.
UNIT-V	<b>Introduction to prime movers</b> : Mechanism, gear system, wheel, Fixing of gears with motor axel. Lever mechanism, Lifting of heavy weight using lever. braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment. (6 Lectures)
TEXT BOOKS	<ol> <li>A text book in Electrical Technology - B L Theraja – S. Chand and Company.</li> <li>Performance and design of AC machines – M.G. Say, ELBS Edn.</li> <li>Mechanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd.</li> <li>Workshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn.,</li> <li>Editor Newnes [ISBN: 0750660732]</li> </ol>

6. New Engineering Technology, Lawrence Smyth/Liam Hennessy, The
7. Educational Company of Ireland [ISBN: 0861674480]

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

ELECTRICAL CIRCUIT NETWORK SKILLS				
Learning Object	ive: The aim of this course is to enable the students to design and			
trouble shoots the electrical circuits, networks and appliances through hands-on mode				
UNITS	COURSE DETAILS			
UNIT-I	<b>Basic Electricity Principles</b> : Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter. (3 Lectures) Understanding Electrical Circuits: Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money. (4 Lectures)			
UNIT-II	<ul> <li>Electrical Drawing and Symbols: Drawing symbols. Blueprints.</li> <li>Reading Schematics. Ladder diagrams. Electrical Schematics. Power circuits. Control circuits. Reading of circuit schematics. Tracking the connections of elements and identify current flow and voltage drop. (4 Lectures)</li> <li>Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers. (3 Lectures)</li> </ul>			
UNIT-III	Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. (4 Lectures) Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources (3 Lectures)			
UNIT-IV	<b>Electrical Protection</b> : Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device) (4 Lectures)			
UNIT-V	<b>Electrical Wiring</b> : Different types of conductors and cables. Basics of			

	wiring-Star and delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and calder. Demonstration of extension based (5 L extense)		
	solder. Preparation of extension board. (5 Lectures)		
TEXT BOOKS	<ol> <li>A text book in Electrical Technology - B L Theraja - S Chand &amp; Co.</li> <li>A text book of Electrical Technology - A K Theraja</li> <li>Performance and design of AC machines - M G Say ELBS Edn.</li> </ol>		

<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
25	75	100	

	BASIC INSTRUMENTATION SKILLS			
	tive: This course is to get exposure with various aspects of instruments			
0	through hands-on mode. Experiments listed below are to be done in			
continuation of t				
UNITS	COURSE DETAILS			
	Basic of Measurement: Instruments accuracy, precision, sensitivity,			
	resolution range etc. Errors in measurements and loading effects.			
UNIT-I	Multimeter: Principles of measurement of dc voltage and dc current,			
	ac voltage, ac current and resistance. Specifications of a multimeter			
	and their significance. (4 Lectures)			
	Electronic Voltmeter: Advantage over conventional multimeter for			
	voltage measurement with respect to input impedance and sensitivity.			
	Principles of voltage, measurement (block diagram only).			
UNIT-II	Specifications of an electronic Voltmeter/ Multimeter and their			
	significance. AC millivoltmeter: Type of AC millivoltmeters:			
	Amplifier- rectifier, and rectifier- amplifier. Block diagram ac			
	millivoltmeter, specifications and their significance. (4 Lectures)			
	Cathode Ray Oscilloscope: Block diagram of basic CRO.			
	Construction of CRT, Electron gun, electrostatic focusing and			
	acceleration (Explanation only- no mathematical treatment), brief			
	discussion on screen phosphor, visual persistence & chemical			
	composition. Time base operation, synchronization. Front panel			
UNIT-III	controls. Specifications of a CRO and their significance. (6 Lectures)			
	Use of CRO for the measurement of voltage (dc and ac frequency, time			
	period. Special features of dual trace, introduction to digital			
	oscilloscope, probes. Digital storage Oscilloscope: Block diagram and			
	principle of working.			
UNIT-IV	Signal Generators and Analysis Instruments: Block diagram,			

	1		
	explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis. (4 Lectures)		
	Impedance Bridges & Q-Meters: Block diagram of bridge. working		
	principles of basic (balancing type) RLC bridge. Specifications of RLC		
	bridge. Block diagram & working principles of a Q- Meter. Digital		
	LCR bridges. (3 Lectures)		
UNIT-V	<b>Digital Instruments:</b> Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter. (3 Lectures) <b>Digital Multimeter:</b> Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. (3 Lectures)		
TEXT BOOKS	<ol> <li>A text book in Electrical Technology - B L Theraja - S Chand and Co.</li> <li>Performance and design of AC machines - M G Say ELBS Edn.</li> <li>Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.</li> <li>Logic circuit design, Shimon P. Vingron, 2012, Springer.</li> <li>Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.</li> <li>Electronic Devices and circuits, S. Salivahanan &amp; N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill</li> <li>Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer</li> <li>Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India</li> </ol>		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

WEATHER FORECASTING				
0 0	tive: The aim of this course is not just to impart theoretical knowledge to			
	o enable them to develop an awareness and understanding regarding the			
causes and effects of different weather phenomenon and basic forecasting techniques				
UNITS	COURSE DETAILS			
UNIT-I	<b>Introduction to atmosphere:</b> Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics. <b>(9 Periods)</b>			
UNIT-II	<b>Measuring the weather:</b> Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission			

	and scattering in atmosphere; radiation laws. (4 Periods)		
UNIT-III	Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes. (3 Periods)		
UNIT-IV	<b>Climate and Climate Change:</b> Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. (6 Periods)		
UNIT-V	<b>Basics of weather forecasting:</b> Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts. <b>(8 Periods)</b>		
TEXT BOOKS	<ol> <li>Aviation Meteorology, I.C. Joshi, 3rd edition 2014, Himalayan Books</li> <li>The weather Observers Hand book, Stephen Burt, 2012, Cambridge University Press.</li> <li>Meteorology, S.R. Ghadekar, 2001, Agromet Publishers, Nagpur.</li> <li>Text Book of Agrometeorology, S.R. Ghadekar, 2005, Agromet Publishers, Nagpur.</li> <li>Atmosphere and Ocean, John G. Harvey, 1995, The Artemis Press.</li> </ol>		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

<b>RENEWABLE ENERGY AND ENERGY HARVESTING</b>					
Learning Obje	ctive: The aim of this course is not just to impart theoretical knowledge to				
the students but	the students but toprovide them with exposure and hands-on learning wherever possible				
UNITS	COURSE DETAILS				
UNIT-I	<b>Fossil fuels and Alternate Sources of energy:</b> Fossil fuels and Nuclear Energy, their limitation, need of renewable energy, non- conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. (3 Lectures)				
UNIT-II	<ul> <li>Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. (6 Lectures)</li> </ul>				
	Wind Energy harvesting: Fundamentals of Wind energy, Wind				

UNIT-III	Turbines and different electrical machines in wind turbines, Power		
UN11-111	electronic interfaces, and grid interconnection topologies. (3 Lectures)		
	<b>Ocean Energy</b> : Ocean Energy Potential against Wind and Solar, Wave		
	Characteristics and Statistics, Wave Energy Devices. (3 Lectures)		
	Tide characteristics and Statistics, Tide Energy Technologies, Ocean		
	Thermal Energy, Osmotic Power, Ocean Bio-mass. (2 Lectures)		
	<b>Geothermal Energy</b> : Geothermal Resources, Geothermal		
	Technologies. (2 Lectures)		
UNIT-IV	<b>Hydro Energy</b> : Hydropower resources, hydropower technologies,		
	environmental impact of hydro power sources. (2 Lectures)		
	<b>Piezoelectric Energy harvesting</b> : Introduction, Physics and		
	characteristics of piezoelectric effect, materials and mathematical		
	description of piezoelectricity, Piezoelectric parameters and modeling		
	piezoelectric generators, Piezoelectric energy harvesting applications,		
	Human power (4 Lectures)		
	Electromagnetic Energy Harvesting: Linear generators, physics		
	mathematical models, recent applications (2 Lectures)		
	Carbon captured technologies, cell, batteries, power consumption (2)		
UNIT-V	Lectures)		
	Environmental issues and Renewable sources of energy, sustainability.		
	(1 Lecture)		
	1. Non-conventional energy sources - G.D Rai - Khanna Publishers,		
	New Delhi		
TEXT BOOKS	2. Solar energy - M P Agarwal - S Chand and Co. Ltd.		
	3. Solar energy - Suhas P Sukhative Tata McGraw - Hill Publishing		
	Company Ltd.		
	4. Godfrey Boyle, "Renewable Energy, Power for a sustainable		
	future", 2004,Oxford University Press, in association with The		
	Open University.		
	5. Dr. P Jayakumar, Solar Energy: Resource Assessment Handbook,		
	2009 6 Delfaur M.Shaw and S. Jaragak, Photovoltaing, Lawrence, L		
	6. J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).		
	7. http://en.wikipedia.org/wiki/Renewable_energy		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	